
Régis Philippe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of CFD for pressure drop, liquid saturation and wetting predictions in trickle bed reactors for different catalyst particle shapes. Chemical Engineering Science, 2022, 249, 117315.	1.9	17
2	Development and Validation of a Detailed Microkinetic Model for the CO ₂ Hydrogenation Reaction toward Hydrocarbons over an Fe–K/Al ₂ O ₃ Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 4514-4533.	1.8	4
3	Process intensification of the catalytic hydrogenation of squalene using a Pd/CNT catalyst combining nanoparticles and single atoms in a continuous flow reactor. Chemical Engineering Journal, 2022, 441, 135951.	6.6	15
4	Multiphase alternated slug flows: Conditions to avoid coalescence and characterization of mass transfer between droplets. Chemical Engineering Journal, 2021, 407, 127215.	6.6	3
5	Unexpected role of NOx during catalytic ozone abatement at low temperature. Catalysis Communications, 2021, 148, 106163.	1.6	8
6	Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catalysis Science and Technology, 2021, 11, 984-999.	2.1	30
7	CFD modeling of mass transfer in Gas-Liquid-Solid catalytic reactors. Chemical Engineering Science, 2021, 233, 116378.	1.9	13
8	Origin of the synergistic effect between TiO2 crystalline phases in the Ni/TiO2-catalyzed CO2 methanation reaction. Journal of Catalysis, 2021, 398, 14-28.	3.1	43
9	Comparison of Structured Reactors for Ozone Abatement in Aircrafts at Low Temperature. Industrial & Engineering Chemistry Research, 2021, 60, 16739-16746.	1.8	2
10	Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions. Catalysts, 2021, 11, 1311.	1.6	6
11	Catalytic and Kinetic Study of the CO ₂ Hydrogenation Reaction over a Fe–K/Al ₂ O ₃ Catalyst toward Liquid and Gaseous Hydrocarbon Production. Industrial & Engineering Chemistry Research, 2021, 60, 16635-16652.	1.8	13
12	Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts. RSC Advances, 2021, 11, 39387-39398.	1.7	6
13	Aerobic Oxidative Cleavage of Vicinal Diol Fatty Esters by a Supported Ruthenium Hydroxide Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 13167-13175.	3.2	18
14	Hydrodynamics of gas-liquid co-current flow through a thin sheet of highly porous open cell solid foam. Chemical Engineering Science, 2020, 226, 115811.	1.9	7
15	Power-to-Liquid catalytic CO2 valorization into fuels and chemicals: focus on the Fischer-Tropsch route. Journal of CO2 Utilization, 2020, 38, 314-347.	3.3	106
16	Direct Synthesis of Nitriles from Carboxylic Acids Using Indium-Catalyzed Transnitrilation: Mechanistic and Kinetic Study. ACS Catalysis, 2019, 9, 9705-9714.	5.5	10
17	Continuous flow aerobic alcohol oxidation using a heterogeneous Ru ⁰ catalyst. Reaction Chemistry and Engineering, 2019, 4, 550-558.	1.9	10
18	Effect of mesoporous carbon support nature and pretreatments on palladium loading, dispersion and apparent catalytic activity in hydrogenation of myrcene. Journal of Catalysis, 2019, 372, 226-244.	3.1	29

RéGIS PHILIPPE

#	Article	IF	CITATIONS
19	Online monitoring by infrared spectroscopy using multivariate analysis – background theory and application to catalytic dehydrogenative coupling of butanol to butyl butyrate. Reaction Chemistry and Engineering, 2019, 4, 909-918.	1.9	6
20	Simple and selective conversion of fructose into HMF using extractive-reaction process in microreactor. Journal of Flow Chemistry, 2018, 8, 3-9.	1.2	28
21	Continuous flow oxidation of benzylic and aliphatic alcohols using bleach: process improvement by precise pH adjustment in flow with CO2. Reaction Chemistry and Engineering, 2018, 3, 188-194.	1.9	10
22	A phenomenological model for bubble coalescence in confined highly porous media. International Journal of Multiphase Flow, 2018, 105, 134-141.	1.6	6
23	Liquid residence time distribution of multiphase horizontal flow in packed bed milli-channel: Spherical beads versus open cell solid foams. Chemical Engineering Science, 2018, 190, 149-163.	1.9	22
24	On the stability of Taylor bubbles inside a confined highly porous medium. International Journal of Multiphase Flow, 2016, 85, 157-163.	1.6	13
25	Hydrodynamics and mass transfer in a tubular reactor containing foam packings for intensification of G-L-S catalytic reactions in co-current up-flow configuration. Chemical Engineering Research and Design, 2016, 109, 686-697.	2.7	20
26	External liquid solid mass transfer for solid particles transported in a milli-channel within a gas–liquid segmented flow. Chemical Engineering Journal, 2016, 287, 92-102.	6.6	20
27	Continuous, Fast, and Safe Aerobic Oxidation of 2-Ethylhexanal: Pushing the Limits of the Simple Tube Reactor for a Gas/Liquid Reaction. Organic Process Research and Development, 2016, 20, 90-94.	1.3	31
28	Milli-channel with metal foams under an applied gas–liquid periodic flow: External mass transfer performance and pressure drop. Chemical Engineering Journal, 2015, 267, 332-346.	6.6	62
29	Milli-channel with metal foams under an applied gas–liquid periodic flow: Flow patterns, residence time distribution and pulsing properties. Chemical Engineering Science, 2015, 126, 406-426.	1.9	41
30	Liquid–Solid Mass Transfer for Microchannel Suspension Catalysis in Gas–Liquid and Liquid–Liquid Segmented Flow. Industrial & Engineering Chemistry Research, 2015, 54, 4699-4708.	1.8	42
31	Direct coating of carbon-supported catalysts on monoliths and foams – Singular behaviour of Pd/MWCNT. Applied Catalysis A: General, 2015, 508, 45-51.	2.2	17
32	Insights in the aerobic oxidation of aldehydes. RSC Advances, 2013, 3, 18931.	1.7	51
33	Gas–liquid–solid "slurry Taylor―flow: Experimental evaluation through the catalytic hydrogenation of 3-methyl-1-pentyn-3-ol. Chemical Engineering Journal, 2013, 227, 174-181.	6.6	45
34	Mass transfer characterisation of a microstructured falling film at pilot scale. Chemical Engineering Journal, 2013, 227, 182-190.	6.6	35
35	A Safe and Efficient Flow Oxidation of Aldehydes with O ₂ . Organic Letters, 2013, 15, 5978-5981.	2.4	80
36	Radial Dispersion in Liquid Upflow through Solid SiC Foams. Industrial & Engineering Chemistry Research, 2011, 50, 4329-4334.	1.8	11

RéGIS PHILIPPE

#	Article	IF	CITATIONS
37	A simple and realistic fixed bed model for investigating Fischer–Tropsch catalyst activity at lab-scale and extrapolating to industrial conditions. Chemical Engineering Science, 2011, 66, 6358-6366.	1.9	23
38	Corrigendum to "Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed―[Catal. Today 147S (2009) S305–S312]. Catalysis Today, 2011, 160, 255-256.	2.2	1
39	Gas–liquid Taylor flow in square micro-channels: New inlet geometries and interfacial area tuning. Chemical Engineering Journal, 2010, 165, 290-300.	6.6	47
40	An original growth mode of MWCNTs on alumina supported iron catalysts. Journal of Catalysis, 2009, 263, 345-358.	3.1	55
41	Kinetic modeling study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition. AICHE Journal, 2009, 55, 465-474.	1.8	15
42	Kinetic study of carbon nanotubes synthesis by fluidized bed chemical vapor deposition. AICHE Journal, 2009, 55, 450-464.	1.8	41
43	Effect of structure and thermal properties of a Fischer–Tropsch catalyst in a fixed bed. Catalysis Today, 2009, 147, S305-S312.	2.2	79
44	Catalytic Production of Carbon Nanotubes by Fluidizedâ€Bed CVD. Chemical Vapor Deposition, 2007, 13, 447-457.	1.4	76
45	Bimetallic catalysis on carbon nanotubes for the selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2006, 240, 18-22.	3.1	172