Qihua Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10956099/publications.pdf

Version: 2024-02-01

236833 223716 2,735 47 25 46 h-index citations g-index papers 47 47 47 2859 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of TiO < sub > 2 < /sub > decorated reduced graphene oxide on mechanical and tribological properties of thermosetting polyimide. Composite Interfaces, 2022, 29, 985-998.	1.3	11
2	Tailoring polyimide composites with low friction and wear at high temperatures. Journal of Applied Polymer Science, 2022, 139, 51736.	1.3	8
3	Molecular dynamic simulation study of tribological mechanism of <scp>PI</scp> composites reinforced by <scp>CNTs</scp> with different orientations. Polymer Composites, 2022, 43, 1557-1565.	2.3	12
4	Mechanical and tribological properties of polytetrafluoroethylene reinforced by nano-ZrO ₂ : Molecular dynamic simulation. High Performance Polymers, 2022, 34, 397-405.	0.8	5
5	Bioâ€based Eucommia ulmoides gum/low density polyethylene shape memory composites reinforced by zinc methacrylate. Polymer International, 2021, 70, 1659.	1.6	3
6	The effect of different layered materials on the tribological properties of PTFE composites. Friction, 2020, 8, 542-552.	3.4	46
7	Improving interfacial compatibility by a micro–nano synergetic structure for highâ€performance epoxy composites. Journal of Applied Polymer Science, 2020, 137, 49195.	1.3	2
8	Ultraâ€high compression and wear resistant hybrid filled polyimide composite: Synergistic effect of Fe ₂ O ₃ decorated RGO. Journal of Applied Polymer Science, 2020, 137, 49222.	1.3	6
9	Tribological behavior prediction of friction materials for ultrasonic motors using Monte Carloâ€based artificial neural network. Journal of Applied Polymer Science, 2019, 136, 47157.	1.3	14
10	The effect of N-doped quantum dots on the properties of in situ prepared colorless polyimide nanocomposite films. Materials and Design, 2018, 140, 144-152.	3.3	19
11	High wear-resistant performance of thermosetting polyimide reinforced by graphitic carbon nitride (g-C3N4) under high temperature. Composites Part A: Applied Science and Manufacturing, 2018, 113, 200-208.	3.8	68
12	Impact of reinforcing fillers' properties on transfer film structure and tribological performance of POM-based materials. Tribology International, 2017, 109, 58-68.	3.0	34
13	Significantly enhanced wear resistance of PEEK by simply filling with modified graphitic carbon nitride. Materials and Design, 2017, 129, 192-200.	3.3	38
14	Engineering a hyperbranched polyimide membrane for shape memory and CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 13823-13833.	5 . 2	32
15	Tribological performance of PPS composites under diesel lubrication conditions. Tribology International, 2017, 115, 338-347.	3.0	26
16	Distinct tribological mechanisms of various oxide nanoparticles added in PEEK composite reinforced with carbon fibers. Composites Part A: Applied Science and Manufacturing, 2017, 97, 19-30.	3.8	54
17	Hybrid effect of ZnS sub-micrometer particles and reinforcing fibers on tribological performance of polyimide under oil lubrication conditions. Wear, 2017, 380-381, 86-95.	1.5	30
18	Significance of combined functional nanoparticles for enhancing tribological performance of PEEK reinforced with carbon fibers. Composites Part A: Applied Science and Manufacturing, 2017, 102, 400-413.	3.8	54

#	Article	IF	CITATIONS
19	Dual-Triggered and Thermally Reconfigurable Shape Memory Graphene-Vitrimer Composites. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21691-21699.	4.0	207
20	High mechanical and tribological performance of polyimide nanocomposites reinforced by chopped carbon fibers in adverse operating conditions. Composites Science and Technology, 2016, 134, 251-257.	3.8	52
21	Exploring the influence of counterpart materials on tribological behaviors of epoxy composites. Tribology International, 2016, 103, 566-573.	3.0	19
22	Tunable Tripleâ€Shape Memory Binary Mixtures with High Transition Temperature and Robust Mechanical Properties. Macromolecular Chemistry and Physics, 2016, 217, 1305-1313.	1.1	15
23	Comparative study on the tribological properties of the polyimide composites reinforced with different fibers. Polymer Composites, 2016, 37, 2541-2548.	2.3	17
24	Effects of glass fiber and molybdenum disulfide on tribological behaviors and PV limit of chopped carbon fiber reinforced Polytetrafluoroethylene composites. Tribology International, 2016, 104, 392-401.	3.0	49
25	High performance multiple-shape memory behaviors of Poly(benzoxazole-co-imide)s. Polymer, 2016, 88, 19-28.	1.8	46
26	Tribological Performances of Thermosetting Polyimide Matched with Steel and Ceramic. Tribology Transactions, 2016, 59, 128-138.	1.1	3
27	Friction and Wear of Potassium Titanate Whisker Filled Carbon Fabric/Phenolic Polymer Composites. Journal of Tribology, 2015, 137, .	1.0	11
28	High performance shape memory polyimides based on π–π interactions. Journal of Materials Chemistry A, 2015, 3, 352-359.	5.2	102
29	Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment. Tribology International, 2015, 92, 246-254.	3.0	67
30	Effects of atomic oxygen exposure on the tribological performance of ZrO2-reinforced polyimide nanocomposites for low earth orbit space applications. Composites Part B: Engineering, 2015, 77, 215-222.	5.9	57
31	Effect of temperature on sliding and erosive wear of fiber reinforced polyimide hybrids. Tribology International, 2015, 82, 525-533.	3.0	52
32	Friction and wear of fiber reinforced polyimide composites. Wear, 2013, 301, 122-129.	1.5	118
33	The influence of nanoparticle fillers on the friction and wear behavior of polymer matrices. , 2013, , 91-118.		1
34	Tribological Properties of Thermosetting Polyimide/TiO ₂ Nanocomposites Under Dry Sliding and Water-Lubricated Conditions. Journal of Macromolecular Science - Physics, 2012, 51, 2284-2296.	0.4	9
35	<i>In situ</i> synthesis and properties of PMR PI/SiO ₂ nanocomposites. Journal of Applied Polymer Science, 2012, 125, 488-493.	1.3	21
36	Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. Journal of Solid State Electrochemistry, 2012, 16, 2095-2102.	1.2	174

#	Article	IF	CITATIONS
37	Facile Synthesis of Porous Mn ₃ O ₄ NanoÂcrystal–Graphene Nanocomposites for Electrochemical Supercapacitors. European Journal of Inorganic Chemistry, 2012, 2012, 628-635.	1.0	115
38	Shape-controlled Synthesis of Porous SnO2 Nanostructures via Morphologically Conserved Transformation from SnC2O4 Precursor Approach. Nano-Micro Letters, 2011, 3, 34-42.	14.4	17
39	Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes. Nanotechnology, 2011, 22, 135604.	1.3	90
40	Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co ₃ O ₄ Nanostructures for Application in Supercapacitors. Inorganic Chemistry, 2011, 50, 6482-6492.	1.9	285
41	A Synergistic Effect of Graphite and Nano-CuO on the Tribological Behavior of Polyimide Composites. Journal of Macromolecular Science - Physics, 2010, 50, 213-224.	0.4	19
42	The influence of nanoparticle fillers on the friction and wear behavior of polymer matrices. Tribology and Interface Engineering Series, 2008, 55, 62-81.	0.0	6
43	Tribological properties of micron silicon carbide filled poly(ether ether ketone). Journal of Applied Polymer Science, 1999, 74, 2611-2615.	1.3	19
44	The friction and wear properties of nanometer ZrO2-filled polyetheretherketone. Journal of Applied Polymer Science, 1998, 69, 135-141.	1.3	97
45	The friction and wear properties of nanometre SiO2 filled polyetheretherketone. Tribology International, 1997, 30, 193-197.	3.0	192
46	The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK. Wear, 1996, 198, 216-219.	1.5	216
47	An investigation of the friction and wear properties of nanometer Si3N4 filled PEEK. Wear, 1996, 196, 82-86.	1.5	197