Andre C Van Veen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10955950/publications.pdf Version: 2024-02-01

ANDRE C VAN VEEN

#	Article	IF	CITATIONS
1	Design and performance of asymmetric supported membranes for oxygen and hydrogen separation. International Journal of Hydrogen Energy, 2021, 46, 20222-20239.	7.1	11
2	Mechanistic insights into the conversion of dimethyl ether over ZSM-5 catalysts: A combined temperature-programmed surface reaction and microkinetic modelling study. Chemical Engineering Science, 2021, 239, 116620.	3.8	9
3	A quantitative multiscale perspective on primary olefin formation from methanol. Physical Chemistry Chemical Physics, 2021, 23, 21437-21469.	2.8	8
4	Competitive adsorption of oxygenates and aromatics during the initial steps of the formation of primary olefins over ZSM-5 catalysts. Catalysis Communications, 2020, 140, 106010.	3.3	9
5	Influence of Precursors on the Induction Period and Transition Regime of Dimethyl Ether Conversion to Hydrocarbons over ZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 16479-16488.	3.7	9
6	Transient kinetic studies and microkinetic modeling of primary olefin formation from dimethyl ether over ZSMâ€5 catalysts. International Journal of Chemical Kinetics, 2019, 51, 528-537.	1.6	17
7	Selective production of ethylene via continuous oxidative dehydrogenation of ethane in (Dy2O3/MgO)-(Li-K)Cl composite membrane reactor. Chemical Engineering Journal, 2019, 365, 344-350.	12.7	2
8	Mechanistic Insights into the Desorption of Methanol and Dimethyl Ether Over ZSM-5 Catalysts. Catalysis Letters, 2018, 148, 474-488.	2.6	25
9	Superacid-Treated Silicon Surfaces: Extending the Limit of Carrier Lifetime for Photovoltaic Applications. IEEE Journal of Photovoltaics, 2017, 7, 1574-1583.	2.5	40
10	Mechanism of Ethanol Steam Reforming Over Pt/(Ni+Ru)-Promoted Oxides by FTIRS In Situ. Topics in Catalysis, 2016, 59, 1332-1342.	2.8	14
11	Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. Journal of Catalysis, 2015, 325, 48-59.	6.2	289
12	Ex-situ and In-situ Analysis of MoVTeNb Oxide by Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 108-109.	0.4	0
13	Reversibility of the Modification of HZSM-5 with Phosphate Anions. Journal of Physical Chemistry C, 2014, 118, 6122-6131.	3.1	36
14	Highly Selective Supported Alkali Chloride Catalysts for the Oxidative Dehydrogenation of Ethane. Topics in Catalysis, 2014, 57, 1236-1247.	2.8	7
15	On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. Journal of Catalysis, 2014, 317, 185-197.	6.2	236
16	Oxidative Dehydrogenation of Ethane on Dynamically Rearranging Supported Chloride Catalysts. Journal of the American Chemical Society, 2014, 136, 12691-12701.	13.7	54
17	On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 2014, 314, 21-31.	6.2	135
18	Methanol oxidation as probe reaction for active sites in Au/ZnO and Au/TiO2 catalysts. Journal of Catalysis, 2013, 299, 162-170.	6.2	57

ANDRE C VAN VEEN

#	Article	IF	CITATIONS
19	Gasâ€phase oxidation of 2â€propanol over Au/TiO ₂ catalysts to probe metal–support interactions. Physica Status Solidi (B): Basic Research, 2013, 250, 1094-1106.	1.5	25
20	Dealumination of HZSM-5 via steam-treatment. Microporous and Mesoporous Materials, 2012, 164, 9-20.	4.4	161
21	Oxidative steam reforming of ethanol over Ir/CeO2 catalysts: A structure sensitivity analysis. Journal of Catalysis, 2012, 286, 137-152.	6.2	89
22	Catalyst design based on microkinetic models: Oxidative coupling of methane. Catalysis Today, 2011, 159, 29-36.	4.4	84
23	Partial oxidation of methane on Pt-supported lanthanide doped ceria–zirconia oxides: Effect of the surface/lattice oxygen mobility on catalytic performance. Catalysis Today, 2011, 169, 125-137.	4.4	25
24	Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Applied Catalysis B: Environmental, 2010, 96, 476-485.	20.2	215
25	Tap study of the impact of the oxidation state of Pt/PrCeZrO and Pt/GdCeZrO catalysts on their reactivity in the partial/deep oxidation of methane. Reaction Kinetics and Catalysis Letters, 2009, 97, 349-354.	0.6	3
26	Evaluation of kinetic models for the partial oxidation of methane to synthesis gas over a Pt/PrCeZrOx catalyst coated on a triangular monolith. Chemical Engineering Journal, 2009, 154, 174-184.	12.7	18
27	Coprocessing of Oxygenated Biomass Compounds and Hydrocarbons for the Production of Sustainable Fuel. ChemSusChem, 2008, 1, 179-181.	6.8	57
28	High-temperature parallel screening of catalysts for the oxidative coupling of methane. Catalysis Today, 2008, 137, 80-89.	4.4	54
29	CO Oxidation over Supported Gold Catalysts—"Inert―and "Active―Support Materials and Their Role for the Oxygen Supply during Reaction. Journal of Catalysis, 2001, 197, 113-122.	6.2	1,094

30 TAP Reactor Studies. , 0, , 237-269.

4