Arash Rafii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10955844/publications.pdf

Version: 2024-02-01

159358 102304 4,682 77 30 66 h-index citations g-index papers 79 79 79 9816 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Integrative Analyses of Colorectal Cancer Show Immunoscore Is a Stronger Predictor of Patient Survival Than Microsatellite Instability. Immunity, 2016, 44, 698-711.	6.6	814
2	Molecular Signatures of Tissue-Specific Microvascular Endothelial Cell Heterogeneity in Organ Maintenance and Regeneration. Developmental Cell, 2013, 26, 204-219.	3.1	548
3	Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. Journal of Translational Medicine, 2013, 11, 94.	1.8	359
4	Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?. International Journal of Molecular Sciences, 2018, 19, 181.	1.8	329
5	Angiocrine Factors Deployed by Tumor Vascular Niche Induce B Cell Lymphoma Invasiveness and Chemoresistance. Cancer Cell, 2014, 25, 350-365.	7.7	203
6	Functional Network Pipeline Reveals Genetic Determinants Associated with in Situ Lymphocyte Proliferation and Survival of Cancer Patients. Science Translational Medicine, 2014, 6, 228ra37.	5.8	181
7	Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget, 2016, 7, 36366-36381.	0.8	148
8	European Society of Gynaecological Oncology (ESGO) Guidelines for Ovarian Cancer Surgery. International Journal of Gynecological Cancer, 2017, 27, 1534-1542.	1.2	121
9	Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Scientific Reports, 2016, 6, 21507.	1.6	101
10	Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12. International Journal of Cancer, 2011, 128, 715-725.	2.3	96
11	Epithelial to Mesenchymal Transition in a Clinical Perspective. Journal of Oncology, 2015, 2015, 1-10.	0.6	84
12	Oncologic Trogocytosis of an Original Stromal Cells Induces Chemoresistance of Ovarian Tumours. PLoS ONE, 2008, 3, e3894.	1.1	84
13	NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nature Communications, 2018, 9, 1373.	5.8	77
14	SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Scientific Reports, 2021, 11, 8177.	1.6	77
15	Hospicells (ascitesâ€derived stromal cells) promote tumorigenicity and angiogenesis. International Journal of Cancer, 2010, 126, 2090-2101.	2.3	70
16	Mesenchymal stem cells enhance ovarian cancer cell infiltration through IL6 secretion in an amniochorionic membrane based 3D model. Journal of Translational Medicine, 2013, 11, 28.	1.8	68
17	Endothelial Cells Provide a Notch-Dependent Pro-Tumoral Niche for Enhancing Breast Cancer Survival, Stemness and Pro-Metastatic Properties. PLoS ONE, 2014, 9, e112424.	1.1	68
18	Multi-Center Evaluation of Post-Operative Morbidity and Mortality after Optimal Cytoreductive Surgery for Advanced Ovarian Cancer. PLoS ONE, 2012, 7, e39415.	1.1	64

#	Article	IF	CITATIONS
19	SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Research, 2014, 13, 172-179.	0.3	63
20	CCL2/CCL5 secreted by the stroma induce IL-6/PYK2 dependent chemoresistance in ovarian cancer. Molecular Cancer, 2018, 17, 47.	7.9	59
21	Angiocrine endothelium: from physiology to cancer. Journal of Translational Medicine, 2020, 18, 52.	1.8	53
22	Copy Number Variation Analysis of Matched Ovarian Primary Tumors and Peritoneal Metastasis. PLoS ONE, 2011, 6, e28561.	1.1	47
23	Complementarity of SOMAscan to LC-MS/MS and RNA-seq for quantitative profiling of human embryonic and mesenchymal stem cells. Journal of Proteomics, 2017, 150, 86-97.	1.2	46
24	Microparticles mediated cross-talk between tumoral and endothelial cells promote the constitution of a pro-metastatic vascular niche through Arf6 up regulation. Cancer Microenvironment, 2014, 7, 41-59.	3.1	45
25	Guidelines for reporting secondary findings of genome sequencing in cancer genes: the SFMPP recommendations. European Journal of Human Genetics, 2018, 26, 1732-1742.	1.4	44
26	Mesenchymal Cell Interaction with Ovarian Cancer Cells Triggers Pro-Metastatic Properties. PLoS ONE, 2012, 7, e38340.	1.1	44
27	Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. Journal of Translational Medicine, 2015, 13, 27.	1.8	43
28	Metabolic signatures differentiate ovarian from colon cancer cell lines. Journal of Translational Medicine, 2015, 13, 223.	1.8	34
29	Silencing of ANKRD12 circRNA induces molecular and functional changes associated with invasive phenotypes. BMC Cancer, 2019, 19, 565.	1.1	33
30	Epigenetics and Cardiovascular Disease in Diabetes. Current Diabetes Reports, 2015, 15, 108.	1.7	32
31	Circulating microparticles in acute diabetic Charcot foot exhibit a high content of inflammatory cytokines, and support monocyte-to-osteoclast cell induction. Scientific Reports, 2017, 7, 16450.	1.6	30
32	Akt-Activated Endothelium Constitutes the Niche for Residual Disease and Resistance to Bevacizumab in Ovarian Cancer. Molecular Cancer Therapeutics, 2014, 13, 3123-3136.	1.9	29
33	Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell–derived cardiomyocytes. Journal of Heart and Lung Transplantation, 2017, 36, 684-693.	0.3	29
34	Role of the Microenvironment in Ovarian Cancer Stem Cell Maintenance. BioMed Research International, 2013, 2013, 1-10.	0.9	28
35	Mesenchymal cell interaction with ovarian cancer cells induces a background dependent pro-metastatic transcriptomic profile. Journal of Translational Medicine, 2014, 12, 59.	1.8	28
36	AAV-mediated persistent bevacizumab therapy suppresses tumor growth of ovarian cancer. Gynecologic Oncology, 2014, 135, 325-332.	0.6	28

#	Article	IF	Citations
37	GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives. Stem Cell Reports, 2016, 7, 518-526.	2.3	27
38	Human Embryonic Stem Cell Derived Mesenchymal Progenitors Express Cardiac Markers but Do Not Form Contractile Cardiomyocytes. PLoS ONE, 2013, 8, e54524.	1.1	26
39	Nesting of colon and ovarian cancer cells in the endothelial niche is associated with alterations in glycan and lipid metabolism. Scientific Reports, 2017, 7, 39999.	1.6	26
40	Vaginal hysterectomy for benign disorders in obese women: a prospective study. BJOG: an International Journal of Obstetrics and Gynaecology, 2005, 112, 223-227.	1.1	25
41	Hospicells derived from ovarian cancer stroma inhibit Tâ€cell immune responses. International Journal of Cancer, 2010, 126, 2143-2152.	2.3	25
42	Endothelial cells provide a niche for placental hematopoietic stem/progenitor cell expansion through broad transcriptomic modification. Stem Cell Research, 2013, 11, 1074-1090.	0.3	25
43	Role of mesenchymal cells in the natural history of ovarian cancer: a review. Journal of Translational Medicine, 2014, 12, 271.	1.8	23
44	MicroRNA-200, associated with metastatic breast cancer, promotes traits of mammary luminal progenitor cells. Oncotarget, 2017, 8, 83384-83406.	0.8	23
45	Gene expression analysis of matched ovarian primary tumors and peritoneal metastasis. Journal of Translational Medicine, 2012, 10, 121.	1.8	21
46	Akt-activated endothelium promotes ovarian cancer proliferation through notch activation. Journal of Translational Medicine, 2019, 17, 194.	1.8	20
47	SDF-1alpha concentration dependent modulation of RhoA and Rac1 modifies breast cancer and stromal cells interaction. BMC Cancer, 2015, 15, 569.	1.1	19
48	The Necessity of a Systematic Approach for the Use of MSCs in the Clinical Setting. Stem Cells International, 2013, 2013, 1-10.	1.2	17
49	VE-cadherin cleavage by ovarian cancer microparticles induces \hat{l}^2 -catenin phosphorylation in endothelial cells. Oncotarget, 2016, 7, 5289-5305.	0.8	17
50	Angiogenic content of microparticles in patients with diabetes and coronary artery disease predicts networks of endothelial dysfunction. Cardiovascular Diabetology, 2022, 21, 17.	2.7	17
51	P-Glycoprotein-Activity Measurements in Multidrug Resistant Cell Lines: Single-Cell versus Single-Well Population Fluorescence Methods. BioMed Research International, 2013, 2013, 1-11.	0.9	13
52	Differentially expressed circulating microRNAs in the development of acute diabetic Charcot foot. Epigenomics, 2018, 10, 1267-1278.	1.0	13
53	A Systems-level Characterization of the Differentiation of Human Embryonic Stem Cells into Mesenchymal Stem Cells*[S]. Molecular and Cellular Proteomics, 2019, 18, 1950-1966.	2.5	13
54	Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer. PLoS Genetics, 2016, 12, e1005755.	1.5	12

#	Article	IF	Citations
55	Critical steps for initiating an animal uterine transplantation model in sheep: Experience from a case series. International Journal of Surgery, 2018, 60, 245-251.	1.1	12
56	Signal Transducer and Activator of Transcription 3 (STAT3) Suppresses STAT1/Interferon Signaling Pathway and Inflammation in Senescent Preadipocytes. Antioxidants, 2021, 10, 334.	2.2	12
57	Surgical peritoneal stress creates a pro-metastatic niche promoting resistance to apoptosis via IL-8. Journal of Translational Medicine, 2018, 16, 271.	1.8	11
58	Adaptation of a Commonly Used, Chemically Defined Medium for Human Embryonic Stem Cells to Stable Isotope Labeling with Amino Acids in Cell Culture. Journal of Proteome Research, 2013, 12, 3233-3245.	1.8	10
59	Dromedary camels as a natural source of neutralizing nanobodies against SARS-CoV-2. JCI Insight, 2021, 6, .	2.3	9
60	Whole-methylome analysis of circulating monocytes in acute diabetic Charcot foot reveals differentially methylated genes involved in the formation of osteoclasts. Epigenomics, 2019, 11, 281-296.	1.0	8
61	A de novo synonymous variant in EFTUD2 disrupts normal splicing and causes mandibulofacial dysostosis with microcephaly: case report. BMC Medical Genetics, 2020, 21, 182.	2.1	8
62	Defining the landscape of metabolic dysregulations in cancer metastasis. Clinical and Experimental Metastasis, 2022, 39, 345-362.	1.7	8
63	Activated protein C upregulates ovarian cancer cell migration and promotes unclottability of the cancer cell microenvironment. Oncology Reports, 2015, 34, 603-609.	1.2	7
64	Are Early Relapses in Advanced-Stage Ovarian Cancer Doomed to a Poor Prognosis?. PLoS ONE, 2016, 11, e0147787.	1.1	7
65	High-prevalence and broad spectrum of Cell Adhesion and Extracellular Matrix gene pathway mutations in epithelial ovarian cancer. Journal of Clinical Bioinformatics, 2012, 2, 15.	1.2	4
66	Randomized Study of Aggressive Surgery for Advanced Ovarian Cancer. International Journal of Gynecological Cancer, 2013, 23, 1168.2-1170.	1.2	3
67	Which Surgical Attitude to Choose in the Context of Non-Resectability of Ovarian Carcinomatosis: Beyond Gross Residual Disease Considerations. Annals of Surgical Oncology, 2016, 23, 434-442.	0.7	3
68	STXBP6, reciprocally regulated with autophagy, reduces triple negative breast cancer aggressiveness. Clinical and Translational Medicine, 2020, 10, e147.	1.7	3
69	Discovery of new therapeutic targets in ovarian cancer through identifying significantly non-mutated genes. Journal of Translational Medicine, 2022, 20, .	1.8	3
70	Improvement of therapy-induced myelodysplastic syndrome by infusion of autologous CD34-positive hematopoietic progenitor cells without chemotherapy. Leukemia and Lymphoma, 2020, 61, 3259-3262.	0.6	1
71	Tunneling nanotubes mediate preferential transfer of mitochondria from endothelial to cancer cells and confer chemoresistance., 2012,,.		1
72	Altered Circulating microRNAs in Patients with Diabetic Neuropathy and Corneal Nerve Loss: A Pilot Study. Journal of Clinical Medicine, 2022, 11, 1632.	1.0	1

#	Article	IF	CITATIONS
73	Akt-activated endothelium constitute the niche for residual disease and resistance to bevacizumab in ovarian cancer. , 2012 , , .		0
74	Endothelial cells provide a niche for placental hematopoietic stem cell expansion. , 2012, , .		0
75	Determining the significance of observed mutations in ovarian tumors using a random expectation model. , 2012 , , .		O
76	Metastatic Cancer And Rna Editing: Brief Look At How Rna Editing Is Seen To Encourage Primary Cancer Cells To Metastasize. , 2014 , , .		0
77	Abstract 18901: Endothelium Based Feeder Improves Capacity of Human Embryonic Stem Cells Derived Cardiomyocytes. Circulation, 2015, 132, .	1.6	0