
Manish Motwani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10955537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are You a Robot?. JACC: Cardiovascular Imaging, 2022, 15, 872-874.	5.3	0
2	Hiding beyond plain sight: Textural analysis of positron emission tomography to identify high-risk plaques in carotid atherosclerosis. Journal of Nuclear Cardiology, 2021, 28, 1872-1874.	2.1	5
3	Artificial Intelligence in Cardiovascular Imaging for Risk Stratification in Coronary Artery Disease. Radiology: Cardiothoracic Imaging, 2021, 3, e200512.	2.5	39
4	Artificial intelligence in cardiovascular CT: Current status and future implications. Journal of Cardiovascular Computed Tomography, 2021, 15, 462-469.	1.3	20
5	Ambulatory intravenous furosemide for decompensated heart failure: safe, feasible, and effective. ESC Heart Failure, 2021, 8, 3906-3916.	3.1	4
6	High-risk plaque features on coronary computed tomography angiography: a long-term relationship: it's complicated!. European Heart Journal Cardiovascular Imaging, 2020, 21, 249-250.	1.2	0
7	Cardiac implantable electronic device (CIED) infections are expensive and associated with prolonged hospitalisation: UK Retrospective Observational Study. PLoS ONE, 2019, 14, e0206611.	2.5	22
8	Myocardial Perfusion Cardiovascular Magnetic Resonance. , 2019, , 51-65.e2.		0
9	Reasons and implications of agreements and disagreements between coronary flow reserve, fractional flow reserve, and myocardial perfusion imaging. Journal of Nuclear Cardiology, 2018, 25, 104-119.	2.1	16
10	Fully automated analysis of attenuation-corrected SPECT for the long-term prediction of acute myocardial infarction. Journal of Nuclear Cardiology, 2018, 25, 1353-1360.	2.1	17
11	Prognostic Value of Combined Clinical andÂMyocardial Perfusion Imaging Data Using Machine Learning. JACC: Cardiovascular Imaging, 2018, 11, 1000-1009.	5.3	172
12	Role of cardiovascular magnetic resonance in the management of patients with stable coronary artery disease. Heart, 2018, 104, 888-894.	2.9	15
13	Impact of incomplete ventricular coverage on diagnostic performance of myocardial perfusion imaging. International Journal of Cardiovascular Imaging, 2018, 34, 661-669.	1.5	6
14	Inverse association of MRI-derived native myocardial T1 and perfusion reserve index in women with evidence of ischemia and no obstructive CAD: A pilot study. International Journal of Cardiology, 2018, 270, 48-53.	1.7	11
15	Inter-scan Reproducibility of Cardiovascular Magnetic Resonance Imaging-Derived Myocardial Perfusion Reserve Index in Women with no Obstructive Coronary Artery Disease. Current Trends in Clinical & Medical Imaging, 2018, 2, .	0.2	3
16	Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. European Heart Journal, 2017, 38, ehw188.	2.2	447
17	Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Review of Medical Devices, 2017, 14, 197-212.	2.8	78
18	Quantitative global plaque characteristics from coronary computed tomography angiography for the prediction of future cardiac mortality during long-term follow-up. European Heart Journal Cardiovascular Imaging, 2017, 18, 1331-1339.	1.2	90

Manish Motwani

#	Article	IF	CITATIONS
19	Myocardial Extracellular Volume Estimation by CMR Predicts Functional Recovery Following Acute MI. JACC: Cardiovascular Imaging, 2017, 10, 989-999.	5.3	57
20	lmaging of coronary atherosclerosis — evolution towards new treatment strategies. Nature Reviews Cardiology, 2016, 13, 533-548.	13.7	47
21	Demons versus level-set motion registration for coronary ¹⁸ F-sodium fluoride PET. Proceedings of SPIE, 2016, 9784, .	0.8	11
22	Factors associated with falseâ€negative cardiovascular magnetic resonance perfusion studies: A Clinical evaluation of magnetic resonance imaging in coronary artery disease (CEâ€MARC) substudy. Journal of Magnetic Resonance Imaging, 2016, 43, 566-573.	3.4	25
23	Prognostic Value of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography in Suspected Coronary Heart Disease: Long-Term Follow-up of a Prospective, Diagnostic Accuracy Cohort Study. Annals of Internal Medicine, 2016, 165, 1.	3.9	80
24	Assessment of aortic stiffness by cardiovascular magnetic resonance following the treatment of severe aortic stenosis by TAVI and surgical AVR. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 37.	3.3	26
25	Motion Correction of ¹⁸ F-NaF PET for Imaging Coronary Atherosclerotic Plaques. Journal of Nuclear Medicine, 2016, 57, 54-59.	5.0	74
26	Automated Quantitative Nuclear Cardiology Methods. Cardiology Clinics, 2016, 34, 47-57.	2.2	14
27	Three-dimensional whole-heart vs. two-dimensional high-resolution perfusion-CMR: a pilot study comparing myocardial ischaemic burden. European Heart Journal Cardiovascular Imaging, 2016, 17, 900-908.	1.2	12
28	Individual component analysis of the multi-parametric cardiovascular magnetic resonance protocol in the CE-MARC trial. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 59.	3.3	14
29	3.0T, time-resolved, 3D flow-sensitive MR in the thoracic aorta: Impact of <i>k-t</i> BLAST acceleration using 8- versus 32-channel coil arrays. Journal of Magnetic Resonance Imaging, 2015, 42, 495-504.	3.4	16
30	Robust myocardial T ₂ and T ₂ * mapping at 3T using imageâ€based shimming. Journal of Magnetic Resonance Imaging, 2015, 41, 1013-1020.	3.4	13
31	Consequence of Cerebral Embolism After Transcatheter Aortic Valve Implantation Compared With Contemporary Surgical Aortic Valve Replacement. Circulation: Cardiovascular Interventions, 2015, 8, e001913.	3.9	29
32	Quantification of myocardial blood flow with cardiovascular magnetic resonance throughout the cardiac cycle. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 4.	3.3	16
33	Automatic registration of misaligned CT attenuation correction maps in Rb-82 PET/CT improves detection of angiographically significant coronary artery disease. Journal of Nuclear Cardiology, 2015, 22, 1285-1295.	2.1	33
34	Multicenter Evaluation of Dynamic Three-Dimensional Magnetic Resonance Myocardial Perfusion Imaging for the Detection of Coronary Artery Disease Defined by Fractional Flow Reserve. Circulation: Cardiovascular Imaging, 2015, 8, .	2.6	58
35	Comparison of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography in Women With Suspected Coronary Artery Disease From the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trial. Circulation, 2014, 129, 1129-1138.	1.6	146
36	Advances in cardiovascular magnetic resonance in ischaemic heart disease and non-ischaemic cardiomyopathies. Heart, 2014, 100, 1722-1733.	2.9	20

#	Article	IF	CITATIONS
37	Evaluation of a comprehensive cardiovascular magnetic resonance protocol in young adults late after the arterial switch operation for d-transposition of the great arteries. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 98.	3.3	49
38	Response to Letter Regarding Article "Comparison of Cardiovascular Magnetic Resonance and Single-Photon Emission Computed Tomography in Women With Suspected Coronary Artery Disease From the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) Trialâ€: Circulation, 2014, 130, e340.	1.6	0
39	Assessment of ischaemic burden in angiographic three-vessel coronary artery disease with high-resolution myocardial perfusion cardiovascular magnetic resonance imaging. European Heart Journal Cardiovascular Imaging, 2014, 15, 701-708.	1.2	20
40	Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 19.	3.3	43
41	Established and emerging cardiovascular magnetic resonance techniques for the assessment of stable coronary heart disease and acute coronary syndromes. Quantitative Imaging in Medicine and Surgery, 2014, 4, 330-44.	2.0	8
42	The effect of microvascular obstruction and intramyocardial hemorrhage on contractile recovery in reperfused myocardial infarction: insights from cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 58.	3.3	58
43	Relationship between Myocardial Edema and Regional Myocardial Function after Reperfused Acute Myocardial Infarction: An MR Imaging Study. Radiology, 2013, 267, 701-708.	7.3	39
44	Fractional flow reserve as the reference standard for myocardial perfusion studies: fool's gold?. European Heart Journal Cardiovascular Imaging, 2013, 14, 1211-1213.	1.2	24
45	Advanced Cardiovascular Magnetic Resonance Myocardial Perfusion Imaging. Circulation: Cardiovascular Imaging, 2013, 6, 339-348.	2.6	41
46	MR Imaging of Cardiac Tumors and Masses: A Review of Methods and Clinical Applications. Radiology, 2013, 268, 26-43.	7.3	307
47	Systolic versus Diastolic Acquisition in Myocardial Perfusion MR Imaging. Radiology, 2012, 262, 816-823.	7.3	30
48	High-Resolution Versus Standard-Resolution Cardiovascular MR Myocardial Perfusion Imaging for the Detection of Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2012, 5, 306-313.	2.6	51
49	Caseous calcification of the mitral valve complicated by embolization, mitral regurgitation, and pericardial constriction. European Heart Journal Cardiovascular Imaging, 2012, 13, 792-792.	1.2	10
50	Serial Change in Health-Related Quality of Life Over 1 Year After Transcatheter Aortic Valve Implantation. Journal of the American College of Cardiology, 2012, 59, 1672-1680.	2.8	46
51	Aortic Coarctation Presenting as Pseudoinfarction. Journal of the American College of Cardiology, 2011, 57, 376.	2.8	1
52	Isolated Left Ventricular Apical Hypoplasia Evaluated by Cardiovascular Magnetic Resonance and Gadolinium Enhancement Techniques. Journal of the American College of Cardiology, 2011, 58, 2355.	2.8	14
53	Myocardial Bridging With a Coronary Artery Aneurysm and Left Ventricular Stunning. American Journal of the Medical Sciences, 2011, 341, 510-511.	1.1	2
54	Accelerated, high spatial resolution cardiovascular magnetic resonance myocardial perfusion imaging. Journal of Nuclear Cardiology, 2011, 18, 952-958.	2.1	6

#	Article	IF	CITATIONS
55	An alternative technique for implantation of a dual chamber pacemaker via a persistent left superior vena cava using a coronary sinus guiding catheter. Journal of Cardiology Cases, 2010, 2, e103-e105.	0.5	3