Hang-Xing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109553/publications.pdf

Version: 2024-02-01

361296 395590 2,149 34 20 33 citations g-index h-index papers 36 36 36 4571 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Mixedâ€Solvent Strategy for Efficient Exfoliation of Inorganic Graphene Analogues. Angewandte Chemie - International Edition, 2011, 50, 10839-10842.	7.2	801
2	Nanomolar detection of dopamine in the presence of ascorbic acid at \hat{l}^2 -cyclodextrin/graphene nanocomposite platform. Electrochemistry Communications, 2010, 12, 557-560.	2.3	186
3	Graphene in Light: Design, Synthesis and Applications of Photoâ€active Graphene and Grapheneâ€Like Materials. Small, 2013, 9, 1266-1283.	5. 2	129
4	A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale, 2015, 7, 10162-10169.	2.8	121
5	Photoactive graphene sheets prepared by "click―chemistry. Chemical Communications, 2011, 47, 5747.	2.2	108
6	Rational design of nitrogen and sulfur co-doped carbon dots for efficient photoelectrical conversion applications. Journal of Materials Chemistry A, 2015, 3, 11287-11293.	5.2	68
7	Well-controlled layer-by-layer assembly of carbon dot/CdS heterojunctions for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015, 3, 16613-16620.	5.2	66
8	Solution-Processed Ultrasensitive Polymer Photodetectors with High External Quantum Efficiency and Detectivity. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3701-3705.	4.0	57
9	Solution-Processed Fe ₃ O ₄ Magnetic Nanoparticle Thin Film Aligned by an External Magnetostatic Field as a Hole Extraction Layer for Polymer Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials	4.0	51
10	Solution-processed near-infrared polymer photodetectors with an inverted device structure. Organic Electronics, 2012, 13, 2929-2934.	1.4	45
11	Fine-Tuning of Fluorinated Thieno[3,4-b]thiophene Copolymer for Efficient Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 4358-4363.	1.5	38
12	Synthesis of mixed-ligand Cu–MOFs and their adsorption of malachite green. RSC Advances, 2017, 7, 30904-30910.	1.7	37
13	Fabrication, gradient extraction and surface polarity-dependent photoluminescence of cow milk-derived carbon dots. RSC Advances, 2014, 4, 58084-58089.	1.7	31
14	Facile Preparation of Brightâ€Fluorescent Soft Materials from Small Organic Molecules. Chemistry - A European Journal, 2016, 22, 8096-8104.	1.7	30
15	Electrochemiluminescent aptasensor based on \hat{l}^2 -cyclodextrin/graphitic carbon nitride composite for highly selective and ultrasensitive assay of platelet derived growth factor BB. Carbon, 2018, 130, 416-423.	5.4	29
16	A synergistic approach to enhance the photoelectrochemical performance of carbon dots for molecular imprinting sensors. Nanoscale, 2019, 11, 7885-7892.	2.8	26
17	lonic liquid-assisted thermal decomposition synthesis of carbon dots and graphene-like carbon sheets for optoelectronic application. RSC Advances, 2016, 6, 61292-61300.	1.7	24
18	An energy and charge transfer synergetic donor–acceptor heterostructure 2D-COF in photovoltaics. Journal of Materials Chemistry A, 2020, 8, 8518-8526.	5.2	24

#	Article	IF	CITATIONS
19	Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties. Nanoscale, 2020, 12, 5834-5847.	2.8	22
20	Freeâ€Radicalâ€Promoted Conversion of Graphite Oxide into Chemically Modified Graphene. Chemistry - A European Journal, 2013, 19, 5948-5954.	1.7	19
21	Graphene oxide/carbon dot composite: a new photoelectrode material for photocurrent response enhancement. Physical Chemistry Chemical Physics, 2015, 17, 32283-32288.	1.3	19
22	Efficient Removal of Organic Dyes from Water by \hat{I}^2 -Cyclodextrin Functionalized Graphite Carbon Nitride Composite. ChemistrySelect, 2017, 2, 1753-1758.	0.7	17
23	Rational design and facile preparation of maleimide-based functional materials for imaging and optoelectronic applications. Materials Chemistry Frontiers, 2019, 3, 571-578.	3.2	16
24	Alkylaminomaleimide fluorophores: synthesis <i>via</i> air oxidation and emission modulation by twisted intramolecular charge transfer. Organic Chemistry Frontiers, 2021, 8, 239-248.	2.3	14
25	Copper Phthalocyanineâ€Functionalized Graphitic Carbon Nitride: A Hybrid Heterostructure toward Photoelectrochemical and Photocatalytic Degradation Applications. Chemistry - an Asian Journal, 2016, 11, 1887-1891.	1.7	12
26	Stealthy nanoparticles protect endothelial barrier from leakiness by resisting the absorption of VE-cadherin. Nanoscale, 2021, 13, 12577-12586.	2.8	11
27	Quantitative Analysis of Protein Corona on Precoated Protein Nanoparticles and Determined Nanoparticles with Ultralow Protein Corona and Efficient Targeting in Vivo. ACS Applied Materials & Interfaces, 2021, 13, 56812-56824.	4.0	9
28	Monitoring the Layer-by-Layer Self-Assembly of Graphene and Graphene Oxide by Spectroscopic Ellipsometry. Journal of Nanoscience and Nanotechnology, 2012, 12, 508-512.	0.9	8
29	Phosphorylation of covalent organic framework nanospheres for inhibition of amyloid- \hat{l}^2 peptide fibrillation. Chemical Science, 2022, 13, 5902-5912.	3.7	7
30	Artificial Chiral Interfaces against Amyloid- \hat{l}^2 Peptide Aggregation: Research Progress and Challenges. ACS Chemical Neuroscience, 2021, 12, 4236-4248.	1.7	6
31	Aspartic Acid-Assisted Size-Controllable Synthesis of Nanoscale Spherical Covalent Organic Frameworks with Chiral Interfaces for Inhibiting Amyloid-β Fibrillation. ACS Applied Bio Materials, 2022, 5, 1210-1221.	2.3	6
32	Photoactive Graphene â€" From Functionalization to Applications. , 2015, , .		1
33	Near-infrared irradiation controlled thermo-switchable polymeric photosensitizer against \hat{l}^2 -amyloid fibrillation. Journal of Materials Chemistry B, 2022, 10, 4832-4839.	2.9	1
34	Frontispiece: Facile Preparation of Bright-Fluorescent Soft Materials from Small Organic Molecules. Chemistry - A European Journal, 2016, 22, .	1.7	0