
Jonathan Sperry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1095204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural Products Containing a Nitrogen–Nitrogen Bond. Journal of Natural Products, 2013, 76, 794-812.	3.0	299
2	Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – To mobilize or to immobilize or to degrade?. Journal of Hazardous Materials, 2021, 401, 123892.	12.4	169
3	Isolation, biological activity and synthesis of benzannulated spiroketal natural products. Natural Product Reports, 2010, 27, 1117.	10.3	138
4	Mushroom-Derived Indole Alkaloids. Journal of Natural Products, 2017, 80, 2178-2187.	3.0	116
5	Pyranonaphthoquinones—isolation, biological activity and synthesis. Natural Product Reports, 2008, 25, 376-400.	10.3	87
6	Towards the Shell Biorefinery: Sustainable Synthesis of the Anticancer Alkaloid Proximicinâ€A from Chitin. ChemSusChem, 2018, 11, 532-535.	6.8	79
7	Production of Levoglucosenone and Dihydrolevoglucosenone by Catalytic Reforming of Volatiles from Cellulose Pyrolysis Using Supported Ionic Liquid Phase. ACS Sustainable Chemistry and Engineering, 2017, 5, 1132-1140.	6.7	78
8	Natural Products with Heteroatom-Rich Ring Systems. Journal of Natural Products, 2017, 80, 3060-3079.	3.0	69
9	Synthesis of natural products containing spiroketals via intramolecular hydrogen abstraction. Organic and Biomolecular Chemistry, 2010, 8, 29-38.	2.8	61
10	Insights into the active sites and catalytic mechanism of oxidative esterification of 5-hydroxymethylfurfural by metal-organic frameworks-derived N-doped carbon. Journal of Catalysis, 2020, 381, 570-578.	6.2	56
11	Haber-independent, diversity-oriented synthesis of nitrogen compounds from biorenewable chitin. Green Chemistry, 2020, 22, 1978-1984.	9.0	53
12	Cu ¹ –Cu ⁰ bicomponent CuNPs@ZIF-8 for highly selective hydrogenation of biomass derived 5-hydroxymethylfurfural. Green Chemistry, 2019, 21, 4319-4323.	9.0	52
13	Pyridine alkaloids with activity in the central nervous system. Bioorganic and Medicinal Chemistry, 2020, 28, 115820.	3.0	50
14	The Oxidation of Amides to Imides: A Powerful Synthetic Transformation. Synthesis, 2011, 2011, 3569-3580.	2.3	48
15	Pyranonaphthoquinones – isolation, biology and synthesis: an update. Natural Product Reports, 2017, 34, 25-61.	10.3	45
16	Synthesis of the calothrixins, pentacyclic indolo[3,2-j]phenanthridine alkaloids, using a biomimetic approach. Tetrahedron, 2007, 63, 10963-10970.	1.9	44
17	Heteroatom-Directed Reverse Wacker Oxidations. Synthesis of the Reported Structure of (â^')-Herbaric Acid. Journal of Organic Chemistry, 2010, 75, 7388-7392.	3.2	42
18	Synthesis of MCMâ€41â€Supported Metal Catalysts in Deep Eutectic Solvent for the Conversion of Carbohydrates into 5â€Hydroxymethylfurfural. ChemSusChem, 2019, 12, 978-982.	6.8	42

#	Article	IF	CITATIONS
19	Targeting isocitrate lyase for the treatment of latent tuberculosis. Drug Discovery Today, 2017, 22, 1008-1016.	6.4	40
20	Non-monoterpenoid azepinoindole alkaloids. Natural Product Reports, 2018, 35, 1347-1382.	10.3	40
21	Heterocycle construction using the biomass-derived building block itaconic acid. Green Chemistry, 2014, 16, 2084-2101.	9.0	38
22	A biomimetic synthesis of calothrixin B. Tetrahedron Letters, 2007, 48, 231-234.	1.4	37
23	Natural products targeting telomere maintenance. MedChemComm, 2011, 2, 229.	3.4	37
24	Total Synthesis of the Photoprotecting Dipyrrolobenzoquinone (+)-Terreusinone. Organic Letters, 2011, 13, 6444-6447.	4.6	36
25	Total syntheses of (±)-spiroindimicins B and C enabled by a late-stage Schöllkopf–Magnus–Barton–Zard (SMBZ) reaction. Chemical Communications, 2016, 52, 800-802.	4.1	36
26	Total Synthesis of the Initially Reported and Revised Structures of the Neuroprotective Agent Palmyrolide A. Organic Letters, 2012, 14, 5374-5377.	4.6	34
27	Bioinspired total synthesis and structural revision of yuremamine, an alkaloid from the entheogenic plant Mimosa tenuiflora. Chemical Communications, 2015, 51, 6202-6205.	4.1	34
28	Clean Synthesis of 5-Hydroxymethylfurfural and Levulinic Acid by Aqueous Phase Conversion of Levoglucosenone over Solid Acid Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 5892-5899.	6.7	34
29	The influence of microwave irradiation on lipase-catalyzed kinetic resolution of racemic secondary alcohols. Tetrahedron: Asymmetry, 2007, 18, 1618-1624.	1.8	33
30	Pyranonaphthoquinone derivatives of eleutherin, ventiloquinone L, thysanone and nanaomycin A possessing a diverse topoisomerase II inhibition and cytotoxicity spectrum. Bioorganic and Medicinal Chemistry, 2009, 17, 7131-7137.	3.0	33
31	Synthesis of the Azepinobisindole Alkaloid Iheyamine A Enabled by a Cross-Mannich Reaction. Organic Letters, 2016, 18, 5404-5407.	4.6	33
32	Oxidative Ringâ€Expansion of a Chitinâ€Derived Platform Enables Access to Unexplored 2â€Amino Sugar Chemical Space. European Journal of Organic Chemistry, 2019, 2019, 1355-1360.	2.4	33
33	Toward an Asymmetric Synthesis of the Dimeric Pyranonaphthoquinone Antibiotic Crisamicin A. Journal of Organic Chemistry, 2014, 79, 7169-7178.	3.2	28
34	Manganese catalyzed transfer hydrogenation of biomass-derived aldehydes: Insights to the catalytic performance and mechanism. Journal of Catalysis, 2020, 389, 157-165.	6.2	28
35	Itaconate is a covalent inhibitor of the <i>Mycobacterium tuberculosis</i> isocitrate lyase. RSC Medicinal Chemistry, 2021, 12, 57-61.	3.9	28
36	An approach to an enantioselective synthesis of crisamicin A via a novel double Hauser–Kraus annulation strategy. Tetrahedron, 2008, 64, 3912-3927.	1.9	27

#	Article	IF	CITATIONS
37	Enantioselective synthesis of the dimeric pyranonaphthoquinone core of the cardinalins using a late-stage homocoupling strategy. Organic and Biomolecular Chemistry, 2008, 6, 4261.	2.8	27
38	Biomimetic Synthesis of Dendridine A. Organic Letters, 2015, 17, 1344-1346.	4.6	27
39	Biomimetic studies towards the cardinalins: synthesis of (+)-ventiloquinone L and an unusual dimerisation. Organic and Biomolecular Chemistry, 2009, 7, 2599.	2.8	26
40	Iridium-Catalyzed C–H Borylation-Based Synthesis of Natural Indolequinones. Journal of Organic Chemistry, 2012, 77, 2584-2587.	3.2	25
41	Total syntheses of the dipyrrolobenzoquinone (+)-terreusinone enabled by an evaluation of 4-methylpent-1-yn-3-ols in the Larock indole synthesis. Tetrahedron, 2013, 69, 4563-4577.	1.9	25
42	Synthesis of the 1,2,4-thiadiazole alkaloids polycarpathiamines A and B. Organic Chemistry Frontiers, 2016, 3, 38-42.	4.5	25
43	Total Synthesis of an <i>Isatis indigotica</i> -Derived Alkaloid Using a Biomimetic Thio-Diels–Alder Reaction. Organic Letters, 2018, 20, 3545-3548.	4.6	25
44	Two‣tep Preparation of Diverse 3â€Amidofurans from Chitin. ChemistrySelect, 2019, 4, 10097-10099.	1.5	25
45	Enantioselective synthesis of pyranonaphthoquinone antibiotics using a CBS reduction/cross-metathesis/oxa-Michael strategy. Organic and Biomolecular Chemistry, 2011, 9, 5423.	2.8	24
46	Total Synthesis of (â^')-Aspergilazine A. Organic Letters, 2014, 16, 5056-5059.	4.6	24
47	A novel dihydrodifuropyridine scaffold derived from ketones and the chitin-derived heterocycle 3-acetamido-5-acetylfuran. Monatshefte Für Chemie, 2018, 149, 857-861.	1.8	24
48	Chemoenzymatic synthesis of deoxy analogues of the DNA topoisomerase II inhibitor eleutherin and the 3C-protease inhibitor thysanone. Tetrahedron, 2008, 64, 4827-4834.	1.9	23
49	Formal synthesis of nanaomycin D via a Hauser–Kraus annulation using a chiral enone-lactone. Tetrahedron, 2015, 71, 7137-7143.	1.9	23
50	Acetyl-CoA-mediated activation of Mycobacterium tuberculosis isocitrate lyase 2. Nature Communications, 2019, 10, 4639.	12.8	23
51	Synthesis of triazole analogues of the nanaomycin antibiotics using †̃click chemistry'. Tetrahedron, 2010, 66, 4002-4009.	1.9	22
52	Enantioselective Synthesis of an Analogue of Nanaomycin A. Synthesis, 2007, 2007, 2887-2893.	2.3	21
53	Flexible synthesis of diverse N-heterocycles from substrates attainable from biomass. Green Chemistry, 2016, 18, 2453-2459.	9.0	21
54	A Facile Enantioselective Synthesis of the Dimeric Pyranonaphthoquinone Core of the Cardinalins. Synlett, 2008, 2008, 867-870.	1.8	20

#	Article	IF	CITATIONS
55	Synthesis of the Tetracyclic Core of Berkelic Acid Using Gold(I)-Catalyzed Hydroarylation and Oxidative Radical Cyclizations. Organic Letters, 2012, 14, 5820-5823.	4.6	20
56	Natural Product-Inspired Pyranonaphthoquinone Inhibitors of Indoleamine 2,3-Dioxygenase-1 (IDO-1). Australian Journal of Chemistry, 2013, 66, 40.	0.9	20
57	A short synthesis of the endogenous plant metabolite 7-hydroxyoxindole-3-acetic acid (7-OH-OxIAA) using simultaneous C–H borylations. Tetrahedron Letters, 2014, 55, 5798-5800.	1.4	20
58	A Procedure for Transforming Indoles into Indolequinones. Journal of Organic Chemistry, 2015, 80, 1006-1017.	3.2	20
59	Pyrazine alkaloids via dimerization of amino acid-derived α-amino aldehydes: biomimetic synthesis of 2,5-diisopropylpyrazine, 2,5-bis(3-indolylmethyl)pyrazine and actinopolymorphol C. Organic and Biomolecular Chemistry, 2012, 10, 2126.	2.8	19
60	Influence of ionic liquid type on porous carbon formation during the ionothermal pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104728.	5.5	19
61	Diazonamide studies. A direct synthesis of the indole bis-oxazole fragment from tri- and tetra-peptides using biomimetic oxidative cyclizations. Tetrahedron, 2010, 66, 6483-6495.	1.9	18
62	Schischkiniin support studies: synthetic access to 1,1′-bisindoles. Chemical Communications, 2013, 49, 4349-4351.	4.1	18
63	Synthesis and cytotoxicity of pyranonaphthoquinone natural product analogues under bioreductive conditions. Bioorganic and Medicinal Chemistry, 2013, 21, 7971-7980.	3.0	18
64	Transferring the biorenewable nitrogen present in chitin to several N-functional groups. Sustainable Chemistry and Pharmacy, 2019, 13, 100143.	3.3	18
65	The Mechanism of Surface-Radical Generation and Amorphization of Crystalline Quartz Sand upon Mechanochemical Grinding. Journal of Physical Chemistry C, 2021, 125, 20877-20886.	3.1	18
66	Biomimetic approaches to diazonamide A. Direct synthesis of the indole bis-oxazole fragment by oxidation of a TyrValTrpTrp tetrapeptide. Chemical Communications, 2006, , 2397.	4.1	17
67	A concise synthesis of meridianin F. Tetrahedron Letters, 2011, 52, 4537-4538.	1.4	17
68	Extending the Utility of the Bartoli Indolization: Synthesis of Marinoquinolines C and E. Synlett, 2013, 24, 461-464.	1.8	17
69	Synthesis of the 2-methylene analogue of the HRV 3C protease inhibitor thysanone (2-carbathysanone). Organic and Biomolecular Chemistry, 2014, 12, 905-912.	2.8	17
70	Observations arising from a Beckmann rearrangement-Mannich cyclization approach to the azepinobisindole alkaloid iheyamine A. Tetrahedron, 2017, 73, 4355-4362.	1.9	17
71	Total Synthesis and Absolute Configuration of (â^)-Berkeleyamide A. Organic Letters, 2010, 12, 420-423.	4.6	16
72	Discovery of a 1,2-bis(3-indolyl)ethane that selectively inhibits the pyruvate kinase of methicillin-resistant Staphylococcus aureus over human isoforms. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5059-5062.	2.2	15

#	Article	IF	CITATIONS
73	Flavoalkaloids—Isolation, Biological Activity, and Total Synthesis. The Alkaloids Chemistry and Biology, 2017, 77, 85-115.	2.0	15
74	A Bidirectional Synthesis of (+)-Terreusinone. Synlett, 2012, 23, 1824-1828.	1.8	14
75	Synthesis of scalaridine A. Tetrahedron Letters, 2015, 56, 5914-5915.	1.4	14
76	Synthesis of a C8 oxygenated pyranonaphthoquinone: a useful precursor to dimeric pyranonaphthoquinones. Tetrahedron, 2008, 64, 3343-3350.	1.9	13
77	Concise syntheses of 5,6-dibromotryptamine and 5,6-dibromo-N,N-dimethyltryptamine en route to the antibiotic alternatamide D. Tetrahedron Letters, 2011, 52, 4042-4044.	1.4	13
78	Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa. Analytical and Bioanalytical Chemistry, 2016, 408, 6361-6367.	3.7	13
79	Isolation and biological activity of azocine and azocane alkaloids. Bioorganic and Medicinal Chemistry, 2022, 54, 116560.	3.0	13
80	Improved Synthesis of the Benzyne Precursor 2-(Trimethylsilyl)phenyl Trifluoromethanesulfonate. Synthesis, 2010, 2010, 911-913.	2.3	12
81	A Complementary Synthetic Approach to Fluorazone. Journal of Heterocyclic Chemistry, 2014, 51, 282-284.	2.6	12
82	Towards a biomimetic synthesis of schischkiniin: assembling the bis-dihydropyrazinone cycloaddition precursor. Tetrahedron, 2014, 70, 3430-3439.	1.9	12
83	Synthesis and evaluation of 9-deoxy analogues of (â^')-thysanone, an inhibitor of HRV 3C protease. European Journal of Medicinal Chemistry, 2014, 87, 220-227.	5.5	12
84	Synthetic studies towards putative yuremamine using an iterative C(sp ³)–H arylation strategy. Organic and Biomolecular Chemistry, 2016, 14, 5728-5743.	2.8	12
85	Photosensitized Cross-Linking of Tryptophan and Tyrosine Derivatives by Rose Bengal in Aqueous Solutions. Journal of Organic Chemistry, 2018, 83, 10835-10844.	3.2	12
86	Structural Revision of Pseudocerosine and Validation of a Biosynthetic Proposal for E-ring Formation in Pyridoacridine Alkaloids. Organic Letters, 2020, 22, 3495-3498.	4.6	12
87	Synthesis of the 1,2,4-Thiadiazole Alkaloid Polyaurine B. Journal of Natural Products, 2020, 83, 1721-1724.	3.0	12
88	Telomerase Inhibition Studies of Novel Spiroketal-Containing Rubromycin Derivatives. Australian Journal of Chemistry, 2013, 66, 530.	0.9	11
89	Synthesis of Alocasin A. Journal of Natural Products, 2015, 78, 3080-3082.	3.0	11
90	Development of NMR and thermal shift assays for the evaluation of <i>Mycobacterium tuberculosis</i> isocitrate lyase inhibitors. MedChemComm, 2017, 8, 2155-2163.	3.4	11

#	Article	IF	CITATIONS
91	Cleavage of lignin model compounds and lignin ^{ox} using aqueous oxalic acid. Organic and Biomolecular Chemistry, 2019, 17, 7408-7415.	2.8	11
92	Alkaloids from the traditional chinese medicine ChanSu: synthesis-enabled structural reassignment of bufopyramide to bufoserotonin C. Organic and Biomolecular Chemistry, 2015, 13, 7911-7914.	2.8	10
93	Catalytic deep eutectic solvent for levoglucosenone production by pyrolysis of cellulose. Bioresource Technology, 2022, 344, 126323.	9.6	10
94	Synthetic studies towards dendridine A: synthesis of hemi-dendridine A acetate by Fischer indolization. Tetrahedron Letters, 2012, 53, 3623-3626.	1.4	9
95	Synthesis and Biological Evaluation of 7â€Đeoxy Analogues of the Human Rhinovirus 3C Protease Inhibitor Thysanone. European Journal of Organic Chemistry, 2014, 2014, 122-128.	2.4	9
96	Synthesis of 2-(3′-Indolyl)tetrahydrofurans by Oxidative Cycloetherification. Journal of Organic Chemistry, 2015, 80, 2900-2906.	3.2	9
97	Iridium-Catalyzed Triborylation of 3-Substituted Indoles. Australian Journal of Chemistry, 2015, 68, 1810.	0.9	9
98	Synthetic Access to 3,5,7-Trisubstituted Indoles Enabled by IridiumÂ-Catalyzed C–H Borylation. Synthesis, 2017, 49, 4731-4737.	2.3	9
99	Bioâ€Based Chiral Amines via Azaâ€Michael Additions to (–)â€Levoglucosenone Under Aqueous Conditions. European Journal of Organic Chemistry, 2018, 2018, 2028-2038.	2.4	9
100	C4â^'H alkoxylation of 6-bromoindole and its application to the synthesis of breitfussin B. Tetrahedron, 2018, 74, 1199-1202.	1.9	9
101	Synthesis of the Tetracyclic Cores of the Integrastatins, Epicoccolide A and Epicocconigrone A. Journal of Organic Chemistry, 2019, 84, 11935-11944.	3.2	9
102	Synthesis of 3-nitroindoles by sequential paired electrolysis. Organic and Biomolecular Chemistry, 2021, 19, 7903-7913.	2.8	9
103	Total synthesis of putative montamine and a proposed structural reassignment. Organic and Biomolecular Chemistry, 2014, 12, 6878-6884.	2.8	8
104	Bioinspired Total Synthesis and Stereochemical Revision of the Fungal Metabolite Pestalospirane B. Organic Letters, 2017, 19, 3414-3417.	4.6	8
105	Biomimetic synthesis of nudicaulins I and II, yellow pigments from the Iceland poppy <i>Papaver nudicaule</i> . Chemical Communications, 2019, 55, 13594-13597.	4.1	8
106	A furoindoline synthesis by remote radical functionalization. Tetrahedron Letters, 2012, 53, 5426-5429.	1.4	7
107	Iridium-Catalysed C–H Borylation Facilitates a Total Synthesis of the HRV 3C Protease Inhibitor (±)-Thysanone. Synlett, 2014, 25, 556-558.	1.8	7
108	Impact of the alkaloid colletotrichumine A on the pathogenicity of Colletotrichum capsici in Capsicum annum L. Rhizosphere, 2020, 16, 100247.	3.0	7

#	Article	IF	CITATIONS
109	A Facile Cross-Metathesis-Radical-Cyclisation Approach to Monobenzannulated Spiroketals. Synlett, 2009, 2009, 793-797.	1.8	6
110	Efficient Synthesis of the Spiroacetal Core of Paecilospirone via Oxidative Radical Cyclisation. Synlett, 2011, 2011, 1395-1398.	1.8	6
111	Synthesis of Benzannulated Spiroketals Using an Oxidative Radical Cyclization. Synthesis, 2011, 2011, 1383-1398.	2.3	6
112	Studies towards the synthesis of montamine: synthesis of the 1,2-bis(indolyl)ethylhydrazine fragment. Tetrahedron Letters, 2013, 54, 1980-1982.	1.4	6
113	Synthesis of putative clausenal from carbazole using sequential C–H borylations. Tetrahedron Letters, 2017, 58, 1699-1701.	1.4	6
114	Jiangrine-like scaffolds from biorenewable platforms. Tetrahedron Letters, 2020, 61, 152538.	1.4	6
115	Tetrahydrocarbazoles by mechanochemical Fischer indolisation. Tetrahedron Letters, 2021, 72, 153068.	1.4	6
116	Biomimetic Synthesis of Phenazine-1,6-dicarboxylic Acid (PDC). Synlett, 2012, 23, 2827-2829.	1.8	5
117	Total Synthesis of Danshenspiroketallactone. Synlett, 2012, 2012, 128-130.	1.8	5
118	A simple solid phase, peptide-based fluorescent assay for the efficient and universal screening of HRV 3C protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5018-5024.	2.2	5
119	Palladium-Catalyzed Heteroannulation Approach to 1,2-Bis(3-indolyl)ethanes. Synlett, 2013, 24, 1931-1936.	1.8	5
120	Synthetic Studies toward Bisindigotin: Polyheteroaromatic Scaffolds via Skeletal Rearrangements of a Diacetoxytetraindole. Journal of Organic Chemistry, 2021, 86, 74-78.	3.2	5
121	Synthetic studies toward inducamide C. Organic and Biomolecular Chemistry, 2021, 19, 416-420.	2.8	5
122	Enantioselective Synthesis of the 3C-Protease Inhibitor (-)-Thysanone by a Staunton-Weinreb Annulation Strategy. Synthesis, 2009, 2009, 2561-2569.	2.3	4
123	Synthesis of Inducamides A and B. Journal of Natural Products, 2016, 79, 519-522.	3.0	4
124	Bioinspired Synthesis of the Furopyrazine Alkaloid Hyrtioseragamine A. Journal of Organic Chemistry, 2021, 86, 4779-4785.	3.2	4
125	Synthesis of the Pyranonaphthoquinones Dehydroherbarin, (+)-AstropaÂquinone B and (+)-Astropaquinone C en Route to Ascomycones A and B. Synthesis, 2010, 2010, 2604-2608.	2.3	3
126	Synthesis of the Selective Neuronal Nitric Oxide Synthase (nNOS) Inhibitor 5,6-Dibromo-2′-demethylaplysinopsin. Synlett, 2011, 2011, 826-830.	1.8	3

#	Article	IF	CITATIONS
127	Synthesis of three Tricholoma-derived indoles via an ortho-quinone methide. Arkivoc, 2018, 2018, 6-12.	0.5	3
128	One-pot oxidative hydrolysis-oxidative cleavage of 7-borylindoles enables access to <i>o</i> -amidophenols and 4-acylbenzoxazoles. Chemical Communications, 2020, 56, 3559-3562.	4.1	3
129	Biomimetic Synthesis of 2,5-Bis(indol-3-ylmethyl)pyrazine via Intermolecular Amino Aldehyde Cyclization. Synlett, 2011, 2011, 2339-2342.	1.8	2
130	Synthesis of Benzotriazole Analogues of the Helicobactericidal Agents CJ-13,015, CJ-13,102, CJ-13,108, and CJ-13,104 Using a Regioselective 1,3-Dipolar Cycloaddition. Synlett, 2011, 2011, 99-103.	1.8	2
131	Synthetic Studies Toward the Flatwormâ€Derived Alkaloid Pseudocerosine. ChemistrySelect, 2019, 4, 11367-11369.	1.5	2
132	The curious yellow colouring matter of the Iceland poppy. Organic and Biomolecular Chemistry, 2020, 18, 5278-5286.	2.8	2
133	Octacycles and Nonacycles from 3-Hydroxy-2,2′-bisindole. Journal of Organic Chemistry, 2021, , .	3.2	2
134	An Efficient Enantioselective Synthesis of the 3C Protease Inhibitor (-)-Thysanone. Synlett, 2008, 2008, 1910-1912.	1.8	1
135	Synthesis of colletotrichumine A. Heterocyclic Communications, 2015, 21, 335-336.	1.2	1
136	4,4′-Bismoschamine: biomimetic synthesis and evidence to support structural equivalency to montamine. Organic and Biomolecular Chemistry, 2016, 14, 8838-8847.	2.8	1
137	Biomimetic synthesis of the bisindole framework present in sciodole, an alkaloid fromTricholoma sciodes. Organic and Biomolecular Chemistry, 2018, 16, 6882-6885.	2.8	1
138	(1R,1′R,3S,3′S)-5,5′,10,10′-Tetramethoxy-1,1′,3,3′-tetramethyl-3,3′,4,4′-tetrahydro-1H,1 Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o758-o758.	′H-8,8ấ 0.2	쀲-þi[benzo[g
139	Progress toward a biomimetic synthesis of pegaharmaline A. Organic and Biomolecular Chemistry, 2022, 20, 1275-1283.	2.8	1
140	Production of biomass-based composite from reed pretreated by ball-milling combined with p-toluenesulfonic acid. Industrial Crops and Products, 2022, 180, 114712.	5.2	1
1 4 1	Synthesis of bio-based 2-thiothiophenes. Philosophical Transactions Series A, Mathematical, Physical,	0.4	

141 Synthesis of bio-based 2-thiothiophenes. Philosophical I and Engineering Sciences, 2021, 379, 20200350.

9