
Myung-Jun Kwak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10951871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critical Void Dimension of Carbon Frameworks to Accommodate Insoluble Products of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, 14, 492-501.	8.0	1
2	Highly Stable Germanium Microparticle Anodes with a Hybrid Conductive Shell for High Volumetric and Fast Lithium Storage. ACS Applied Materials & Interfaces, 2022, 14, 750-760.	8.0	2
3	Unveiling the Role of the Ti Dopant and Viable Si Doping of Hematite for Practically Efficient Solar Water Splitting. ACS Catalysis, 2022, 12, 5112-5122.	11.2	28
4	Electroactive 1T-MoS ₂ Fluoroelastomer Ink for Intrinsically Stretchable Solid-State In-Plane Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 26870-26878.	8.0	17
5	Graphitization with Suppressed Carbon Loss for High-Quality Reduced Graphene Oxide. ACS Nano, 2021, 15, 11655-11666.	14.6	17
6	NiFeOx decorated Ge-hematite/perovskite for an efficient water splitting system. Nature Communications, 2021, 12, 4309.	12.8	71
7	Selfâ€Assembling Films of Covalent Organic Frameworks Enable Longâ€Term, Efficient Cycling of Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2101726.	21.0	114
8	Stress-Relief Network in Silicon Microparticles and Composite Anodes for Durable High-Energy-Density Batteries. ACS Applied Energy Materials, 2021, 4, 10050-10058.	5.1	8
9	Sn-Controlled Co-Doped Hematite for Efficient Solar-Assisted Chargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 54906-54915.	8.0	10
10	Co ₃ O ₄ Exsolved Defective Layered Perovskite Oxide for Energy Storage Systems. ACS Energy Letters, 2020, 5, 3828-3836.	17.4	25
11	A highly transparent thin film hematite with multi-element dopability for an efficient unassisted water splitting system. Nano Energy, 2020, 76, 105089.	16.0	29
12	Hierarchically Structured Multidimensional Carbon Composite Anchored to a Polymer Mat for a Superflexible Supercapacitor. ACS Applied Energy Materials, 2019, 2, 389-397.	5.1	6
13	Jabuticabaâ€Inspired Hybrid Carbon Filler/Polymer Electrode for Use in Highly Stretchable Aqueous Liâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702478.	19.5	82
14	Boron Doping of Metal-Doped Hematite for Reduced Surface Recombination in Water Splitting. ACS Catalysis, 2018, 8, 11932-11939.	11.2	80
15	Single-Step Synthesis of N-Doped Three-Dimensional Graphitic Foams for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 6950-6957.	6.7	45
16	Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. Journal of Power Sources, 2017, 337, 159-165.	7.8	250
17	A Titaniumâ€Doped SiO _{<i>x</i>} Passivation Layer for Greatly Enhanced Performance of a Hematiteâ€Based Photoelectrochemical System. Angewandte Chemie, 2016, 128, 10076-10080.	2.0	18
18	A Titaniumâ€Doped SiO _{<i>x</i>} Passivation Layer for Greatly Enhanced Performance of a Hematiteâ€Based Photoelectrochemical System. Angewandte Chemie - International Edition, 2016, 55, 9922-9926.	13.8	90

Myung-Jun Kwak

#	Article	IF	CITATIONS
19	A selectively decorated Ti-FeOOH co-catalyst for a highly efficient porous hematite-based water splitting system. Journal of Materials Chemistry A, 2016, 4, 18730-18736.	10.3	47
20	Quantum Dots: Graphene Quantum Dotâ€Protected Cadmium Selenide Quantum Dotâ€5ensitized Photoanode for Efficient Photoelectrochemical Cells with Enhanced Stability and Performance (Advanced Optical Materials 7/2015). Advanced Optical Materials, 2015, 3, 978-978.	7.3	1
21	Graphene Quantum Dotâ€Protected Cadmium Selenide Quantum Dotâ€Sensitized Photoanode for Efficient Photoelectrochemical Cells with Enhanced Stability and Performance. Advanced Optical Materials, 2015, 3, 907-912.	7.3	24
22	MoSx supported hematite with enhanced photoelectrochemical performance. Journal of Materials Chemistry A, 2015, 3, 21444-21450.	10.3	33
23	Nanoporous hematite structures to overcome short diffusion lengths in water splitting. Journal of Materials Chemistry A, 2014, 2, 19999-20003.	10.3	76