List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10949536/publications.pdf Version: 2024-02-01

		1370	1899
207	105,475	108	208
papers	citations	h-index	g-index
217	217	217	92958
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery, 2012, 2, 401-404.	7.7	12,801
2	Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Science Signaling, 2013, 6, pl1.	1.6	11,344
3	Integrated genomic characterization of endometrial carcinoma. Nature, 2013, 497, 67-73.	13.7	4,075
4	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
5	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	6.6	3,706
6	Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell, 2010, 18, 11-22.	7.7	3,151
7	Integrative Clinical Genomics of Advanced Prostate Cancer. Cell, 2015, 161, 1215-1228.	13.5	2,660
8	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
9	Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nature Medicine, 2017, 23, 703-713.	15.2	2,473
10	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	13.5	2,435
11	Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell, 2014, 159, 676-690.	13.5	2,318
12	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	13.5	2,277
13	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	13.5	2,111
14	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 2017, 169, 1327-1341.e23.	13.5	1,794
15	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell, 2017, 171, 540-556.e25.	13.5	1,742
16	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	13.5	1,718
17	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	13.5	1,670
18	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	13.5	1,485

#	Article	IF	CITATIONS
19	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	13.5	1,417
20	OncoKB: A Precision Oncology Knowledge Base. JCO Precision Oncology, 2017, 2017, 1-16.	1.5	1,266
21	Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 443-453.	13.9	1,205
22	Emerging landscape of oncogenic signatures across human cancers. Nature Genetics, 2013, 45, 1127-1133.	9.4	1,190
23	Molecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. Journal of Clinical Oncology, 2018, 36, 633-641.	0.8	1,109
24	Evaluating cell lines as tumour models by comparison of genomic profiles. Nature Communications, 2013, 4, 2126.	5.8	1,108
25	Pathway Commons, a web resource for biological pathway data. Nucleic Acids Research, 2011, 39, D685-D690.	6.5	980
26	Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation, 2016, 126, 1052-1066.	3.9	874
27	Genomic correlates of clinical outcome in advanced prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11428-11436.	3.3	839
28	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	2.9	801
29	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	7.7	750
30	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	13.5	738
31	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	2.9	683
32	Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nature Biotechnology, 2016, 34, 155-163.	9.4	634
33	The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell, 2018, 34, 427-438.e6.	7.7	633
34	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell, 2018, 34, 211-224.e6.	7.7	623
35	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14.	13.5	620
36	The long tail of oncogenic drivers in prostate cancer. Nature Genetics, 2018, 50, 645-651.	9.4	601

#	Article	IF	CITATIONS
37	Mutual exclusivity analysis identifies oncogenic network modules. Genome Research, 2012, 22, 398-406.	2.4	597
38	Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell, 2018, 33, 125-136.e3.	7.7	589
39	Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nature Medicine, 2016, 22, 369-378.	15.2	572
40	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	2.9	523
41	A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12201-12206.	3.3	514
42	Response to MET Inhibitors in Patients with Stage IV Lung Adenocarcinomas Harboring <i>MET</i> Mutations Causing Exon 14 Skipping. Cancer Discovery, 2015, 5, 842-849.	7.7	514
43	Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies. Cancer Discovery, 2017, 7, 596-609.	7.7	490
44	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	7.7	482
45	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	7.7	478
46	Genome-wide analysis of noncoding regulatory mutations in cancer. Nature Genetics, 2014, 46, 1160-1165.	9.4	469
47	Analysis of the Prevalence of Microsatellite Instability in Prostate Cancer and Response to Immune Checkpoint Blockade. JAMA Oncology, 2019, 5, 471.	3.4	426
48	Genome doubling shapes the evolution and prognosis of advanced cancers. Nature Genetics, 2018, 50, 1189-1195.	9.4	411
49	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	2.9	407
50	lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	7.7	400
51	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	7.7	396
52	The mutational landscape of adenoid cystic carcinoma. Nature Genetics, 2013, 45, 791-798.	9.4	394
53	Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clinical Cancer Research, 2019, 25, 2116-2126.	3.2	390
54	Pattern discovery and cancer gene identification in integrated cancer genomic data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4245-4250.	3.3	361

#	Article	IF	CITATIONS
55	Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clinical Cancer Research, 2018, 24, 4154-4161.	3.2	348
56	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	2.9	333
57	Automated Network Analysis Identifies Core Pathways in Glioblastoma. PLoS ONE, 2010, 5, e8918.	1.1	318
58	Loss of the FAT1 Tumor Suppressor Promotes Resistance to CDK4/6 Inhibitors via the Hippo Pathway. Cancer Cell, 2018, 34, 893-905.e8.	7.7	307
59	Ibrutinib Unmasks Critical Role of Bruton Tyrosine Kinase in Primary CNS Lymphoma. Cancer Discovery, 2017, 7, 1018-1029.	7.7	302
60	Adverse Outcomes in Clear Cell Renal Cell Carcinoma with Mutations of 3p21 Epigenetic Regulators <i>BAP1</i> and <i>SETD2</i> : A Report by MSKCC and the KIRC TCGA Research Network. Clinical Cancer Research, 2013, 19, 3259-3267.	3.2	301
61	Copy number alteration burden predicts prostate cancer relapse. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11139-11144.	3.3	299
62	Tumour lineage shapes BRCA-mediated phenotypes. Nature, 2019, 571, 576-579.	13.7	295
63	Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nature Genetics, 2014, 46, 424-426.	9.4	291
64	Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making. JCO Precision Oncology, 2017, 2017, 1-16.	1.5	286
65	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	2.9	284
66	Prevalence and Co-Occurrence of Actionable Genomic Alterations in High-Grade Bladder Cancer. Journal of Clinical Oncology, 2013, 31, 3133-3140.	0.8	282
67	Accelerating Discovery of Functional Mutant Alleles in Cancer. Cancer Discovery, 2018, 8, 174-183.	7.7	275
68	Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. Cancer Discovery, 2018, 8, 49-58.	7.7	275
69	MLL3 Is a Haploinsufficient 7q Tumor Suppressor in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 652-665.	7.7	274
70	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	13.5	272
71	The expanding landscape of â€~oncohistone' mutations in human cancers. Nature, 2019, 567, 473-478.	13.7	271
72	Loss of NF1 in Cutaneous Melanoma Is Associated with RAS Activation and MEK Dependence. Cancer Research, 2014, 74, 2340-2350.	0.4	266

#	Article	IF	CITATIONS
73	Next-generation Sequencing of Nonmuscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. European Urology, 2017, 72, 952-959.	0.9	263
74	Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with <i>EGFR</i> -Mutant Lung Cancers. Clinical Cancer Research, 2019, 25, 1063-1069.	3.2	257
75	The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9435-9440.	3.3	246
76	Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication. Genome Research, 2014, 24, 1740-1750.	2.4	244
77	First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncology, The, 2020, 21, 821-831.	5.1	243
78	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	13.5	228
79	Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.	13.5	223
80	Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death. ELife, 2018, 7, .	2.8	217
81	Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell, 2018, 33, 450-462.e10.	7.7	213
82	Tumor Genetic Analyses of Patients with Metastatic Renal Cell Carcinoma and Extended Benefit from mTOR Inhibitor Therapy. Clinical Cancer Research, 2014, 20, 1955-1964.	3.2	208
83	Genomic Characterization of Upper Tract Urothelial Carcinoma. European Urology, 2015, 68, 970-977.	0.9	202
84	Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature, 2016, 531, 471-475.	13.7	202
85	<i>>PIK3CA</i> Mutations Are Associated With Decreased Benefit to Neoadjuvant Human Epidermal Growth Factor Receptor 2–Targeted Therapies in Breast Cancer. Journal of Clinical Oncology, 2015, 33, 1334-1339.	0.8	201
86	Integrative Subtype Discovery in Glioblastoma Using iCluster. PLoS ONE, 2012, 7, e35236.	1.1	196
87	Analysis of microRNA-target interactions across diverse cancer types. Nature Structural and Molecular Biology, 2013, 20, 1325-1332.	3.6	184
88	The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nature Cell Biology, 2016, 18, 645-656.	4.6	176
89	Distinct Patterns of Dysregulated Expression of Enzymes Involved in Androgen Synthesis and Metabolism in Metastatic Prostate Cancer Tumors. Cancer Research, 2012, 72, 6142-6152.	0.4	175
90	3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Medicine, 2017, 9, 4.	3.6	170

#	Article	IF	CITATIONS
91	Identification of PHLPP1 as a Tumor Suppressor Reveals the Role of Feedback Activation in PTEN-Mutant Prostate Cancer Progression. Cancer Cell, 2011, 20, 173-186.	7.7	158
92	Immunogenomic analyses associate immunological alterations with mismatch repair defects in prostate cancer. Journal of Clinical Investigation, 2018, 128, 4441-4453.	3.9	155
93	Unifying cancer and normal RNA sequencing data from different sources. Scientific Data, 2018, 5, 180061.	2.4	152
94	Genomic Alterations Observed in Colitis-Associated Cancers Are Distinct From Those Found in Sporadic Colorectal Cancers and Vary by Type of Inflammatory Bowel Disease. Gastroenterology, 2016, 151, 278-287.e6.	0.6	147
95	Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors. Journal of Clinical Oncology, 2016, 34, 4000-4007.	0.8	147
96	Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations. Genome Biology, 2015, 16, 45.	3.8	145
97	Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets. Nature Communications, 2016, 7, 13131.	5.8	140
98	A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8212-8217.	3.3	138
99	SQSTM1 Is a Pathogenic Target of 5q Copy Number Gains in Kidney Cancer. Cancer Cell, 2013, 24, 738-750.	7.7	135
100	Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and Optimize Treatment Selection. Clinical Cancer Research, 2020, 26, 3239-3247.	3.2	135
101	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Systems, 2018, 7, 422-437.e7.	2.9	134
102	Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. Journal of Clinical Investigation, 2019, 129, 4276-4289.	3.9	134
103	Defining the spermatogonial stem cell. Developmental Biology, 2004, 269, 393-410.	0.9	126
104	Genomic Predictors of Survival in Patients with High-grade Urothelial Carcinoma of the Bladder. European Urology, 2015, 67, 198-201.	0.9	122
105	The molecular diversity of Luminal A breast tumors. Breast Cancer Research and Treatment, 2013, 141, 409-420.	1.1	120
106	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 2018, 23, 172-180.e3.	2.9	119
107	<i>EGFR</i> and <i>MET</i> Amplifications Determine Response to HER2 Inhibition in <i>ERBB2</i> -Amplified Esophagogastric Cancer. Cancer Discovery, 2019, 9, 199-209.	7.7	115
108	Synthetic Lethality in ATM-Deficient <i>RAD50</i> -Mutant Tumors Underlies Outlier Response to Cancer Therapy. Cancer Discovery, 2014, 4, 1014-1021.	7.7	114

#	Article	IF	CITATIONS
109	18F-Fluorodeoxy-glucose Positron Emission Tomography Marks MYC-Overexpressing Human Basal-Like Breast Cancers. Cancer Research, 2011, 71, 5164-5174.	0.4	113
110	Assessment of Hepatic Arterial Infusion of Floxuridine in Combination With Systemic Gemcitabine and Oxaliplatin in Patients With Unresectable Intrahepatic Cholangiocarcinoma. JAMA Oncology, 2020, 6, 60.	3.4	112
111	Oncogenic Genomic Alterations, Clinical Phenotypes, and Outcomes in Metastatic Castration-Sensitive Prostate Cancer. Clinical Cancer Research, 2020, 26, 3230-3238.	3.2	112
112	Genomic Complexity and AKT Dependence in Serous Ovarian Cancer. Cancer Discovery, 2012, 2, 56-67.	7.7	109
113	Frequent Alterations and Epigenetic Silencing of Differentiation Pathway Genes in Structurally Rearranged Liposarcomas. Cancer Discovery, 2011, 1, 587-597.	7.7	108
114	Integration and Analysis of CPTAC Proteomics Data in the Context of Cancer Genomics in the cBioPortal. Molecular and Cellular Proteomics, 2019, 18, 1893-1898.	2.5	106
115	Integrated Analyses of microRNAs Demonstrate Their Widespread Influence on Gene Expression in High-Grade Serous Ovarian Carcinoma. PLoS ONE, 2012, 7, e34546.	1.1	104
116	Genomic Differences Between "Primary―and "Secondary―Muscle-invasive Bladder Cancer as a Basis for Disparate Outcomes to Cisplatin-based Neoadjuvant Chemotherapy. European Urology, 2019, 75, 231-239.	0.9	104
117	A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nature Genetics, 2020, 52, 448-457.	9.4	104
118	KMT2C mediates the estrogen dependence of breast cancer through regulation of ERÎ \pm enhancer function. Oncogene, 2018, 37, 4692-4710.	2.6	102
119	Mitochondrial respiratory gene expression is suppressed in many cancers. ELife, 2017, 6, .	2.8	102
120	Somatic <i>POLE</i> mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis. Neuro-Oncology, 2015, 17, 1356-1364.	0.6	94
121	Pan-Cancer Analysis of Mutation Hotspots in Protein Domains. Cell Systems, 2015, 1, 197-209.	2.9	94
122	Conditional Selection of Genomic Alterations Dictates Cancer Evolution and Oncogenic Dependencies. Cancer Cell, 2017, 32, 155-168.e6.	7.7	93
123	Platinum-Based Chemotherapy in Metastatic Prostate Cancer With DNA Repair Gene Alterations. JCO Precision Oncology, 2020, 4, 355-366.	1.5	93
124	Comprehensive Analysis of Long Non-Coding RNAs in Ovarian Cancer Reveals Global Patterns and Targeted DNA Amplification. PLoS ONE, 2013, 8, e80306.	1.1	90
125	Chemotherapy Resistance in Diffuse-Type Gastric Adenocarcinoma Is Mediated by RhoA Activation in Cancer Stem-Like Cells. Clinical Cancer Research, 2016, 22, 971-983.	3.2	89
126	Time to Recurrence and Survival in Serous Ovarian Tumors Predicted from Integrated Genomic Profiles. PLoS ONE, 2011, 6, e24709.	1.1	88

#	Article	IF	CITATIONS
127	Small-Cell Carcinomas of the Bladder and Lung Are Characterized by a Convergent but Distinct Pathogenesis. Clinical Cancer Research, 2018, 24, 1965-1973.	3.2	85
128	The Underlying Tumor Genomics of Predominant Histologic Subtypes in Lung Adenocarcinoma. Journal of Thoracic Oncology, 2020, 15, 1844-1856.	0.5	83
129	Therapeutic Implications of Germline Testing in Patients With Advanced Cancers. Journal of Clinical Oncology, 2021, 39, 2698-2709.	0.8	83
130	Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8149-8154.	3.3	80
131	Morphological characterization of colorectal cancers in The Cancer Genome Atlas reveals distinct morphology–molecular associations: clinical and biological implications. Modern Pathology, 2017, 30, 599-609.	2.9	74
132	Prospective pan-cancer germline testing using MSK-IMPACT informs clinical translation in 751 patients with pediatric solid tumors. Nature Cancer, 2021, 2, 357-365.	5.7	74
133	Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures. Molecular Systems Biology, 2017, 13, 914.	3.2	73
134	Clinical and Molecular Predictors of Response to Immune Checkpoint Inhibitors in Patients with Advanced Esophagogastric Cancer. Clinical Cancer Research, 2019, 25, 6160-6169.	3.2	73
135	Genetic Determinants of Outcome in Intrahepatic Cholangiocarcinoma. Hepatology, 2021, 74, 1429-1444.	3.6	73
136	Pan-cancer Analysis of CDK12 Alterations Identifies a Subset of Prostate Cancers with Distinct Genomic and Clinical Characteristics. European Urology, 2020, 78, 671-679.	0.9	72
137	ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature, 2017, 546, 671-675.	13.7	70
138	<i>KMT2C</i> Mutations in Diffuse-Type Gastric Adenocarcinoma Promote Epithelial-to-Mesenchymal Transition. Clinical Cancer Research, 2018, 24, 6556-6569.	3.2	70
139	<i>MLH1</i> â€silenced and nonâ€silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes. Journal of Pathology, 2013, 229, 99-110.	2.1	67
140	Analytic and Clinical Validation of a Prostate Cancer–Enhanced Messenger RNA Detection Assay in Whole Blood as a Prognostic Biomarker for Survival. European Urology, 2014, 65, 1191-1197.	0.9	66
141	Development of Genome-Derived Tumor Type Prediction to Inform Clinical Cancer Care. JAMA Oncology, 2020, 6, 84.	3.4	66
142	A Comprehensive Comparison of Early-Onset and Average-Onset Colorectal Cancers. Journal of the National Cancer Institute, 2021, 113, 1683-1692.	3.0	66
143	Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets. Nature Communications, 2022, 13, .	5.8	63
144	Coaltered <i>Ras/B-raf</i> and <i>TP53</i> Is Associated with Extremes of Survivorship and Distinct Patterns of Metastasis in Patients with Metastatic Colorectal Cancer. Clinical Cancer Research, 2020, 26, 1077-1085.	3.2	62

#	Article	IF	CITATIONS
145	Harmonization of Tumor Mutational Burden Quantification and Association With Response to Immune Checkpoint Blockade in Non–Small-Cell Lung Cancer. JCO Precision Oncology, 2019, 3, 1-12.	1.5	58
146	Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas. Oncotarget, 2014, 5, 8083-8092.	0.8	55
147	The RNA-editing enzyme ADAR promotes lung adenocarcinoma migration and invasion by stabilizing <i>FAK</i> . Science Signaling, 2017, 10, .	1.6	52
148	A Genomic-Pathologic Annotated Risk Model to Predict Recurrence in Early-Stage Lung Adenocarcinoma. JAMA Surgery, 2021, 156, e205601.	2.2	52
149	OncoTree: A Cancer Classification System for Precision Oncology. JCO Clinical Cancer Informatics, 2021, 5, 221-230.	1.0	51
150	PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data. Bioinformatics, 2017, 33, 2238-2240.	1.8	50
151	Cancer-associated mutations in DICER1 RNase IIIa and IIIb domains exert similar effects on miRNA biogenesis. Nature Communications, 2019, 10, 3682.	5.8	48
152	Accelerating precision medicine in metastatic prostate cancer. Nature Cancer, 2020, 1, 1041-1053.	5.7	45
153	Genetic and Epigenetic Determinants of Aggressiveness in Cribriform Carcinoma of the Prostate. Molecular Cancer Research, 2019, 17, 446-456.	1.5	44
154	The context-specific role of germline pathogenicity in tumorigenesis. Nature Genetics, 2021, 53, 1577-1585.	9.4	44
155	Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism. JCI Insight, 2016, 1, .	2.3	41
156	Expression of the Carboxy-Terminal Portion of MUC16/CA125 Induces Transformation and Tumor Invasion. PLoS ONE, 2015, 10, e0126633.	1.1	41
157	Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma. Neuro-Oncology, 2015, 17, 1344-1355.	0.6	40
158	rcellminer: exploring molecular profiles and drug response of the NCI-60 cell lines in R. Bioinformatics, 2016, 32, 1272-1274.	1.8	39
159	MEF Promotes Stemness in the Pathogenesis of Gliomas. Cell Stem Cell, 2012, 11, 836-844.	5.2	37
160	Characteristics and Outcome of <i>AKT1</i> E17K-Mutant Breast Cancer Defined through AACR Project GENIE, a Clinicogenomic Registry. Cancer Discovery, 2020, 10, 526-535.	7.7	36
161	Multicenter phase II study of temozolomide and myeloablative chemotherapy with autologous stem cell transplant for newly diagnosed anaplastic oligodendroglioma. Neuro-Oncology, 2017, 19, 1380-1390.	0.6	35
162	53BP1 Is a Haploinsufficient Tumor Suppressor and Protects Cells from Radiation Response in Glioma. Cancer Research, 2012, 72, 5250-5260.	0.4	34

#	Article	IF	CITATIONS
163	American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange: From Inception to First Data Release and Beyond—Lessons Learned and Member Institutions' Perspectives. JCO Clinical Cancer Informatics, 2018, 2, 1-14.	1.0	33
164	A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers. PLoS Computational Biology, 2016, 12, e1004765.	1.5	32
165	Phase and context shape the function of composite oncogenic mutations. Nature, 2020, 582, 100-103.	13.7	31
166	Abnormal oxidative metabolism in a quiet genomic background underlies clear cell papillary renal cell carcinoma. ELife, 2019, 8, .	2.8	31
167	Prediction of individualized therapeutic vulnerabilities in cancer from genomic profiles. Bioinformatics, 2014, 30, 2051-2059.	1.8	30
168	Analysis of Tumor Genomic Pathway Alterations Using Broad-Panel Next-Generation Sequencing in Surgically Resected Lung Adenocarcinoma. Clinical Cancer Research, 2019, 25, 7475-7484.	3.2	30
169	Using MEMo to Discover Mutual Exclusivity Modules in Cancer. Current Protocols in Bioinformatics, 2013, 41, Unit 8.17.	25.8	29
170	Identifying Actionable Targets through Integrative Analyses of GEM Model and Human Prostate Cancer Genomic Profiling. Molecular Cancer Therapeutics, 2015, 14, 278-288.	1.9	29
171	Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 2020, 4, 1167-1179.	1.5	28
172	Specific Mutations in APC, but Not Alterations in DNA Damage Response, Associate With Outcomes of Patients With Metastatic Colorectal Cancer. Gastroenterology, 2020, 159, 1975-1978.e4.	0.6	26
173	Therapeutic Implications of Detecting MAPK-Activating Alterations in Cutaneous and Unknown Primary Melanomas. Clinical Cancer Research, 2021, 27, 2226-2235.	3.2	25
174	Integrating biological pathways and genomic profiles with ChiBE 2. BMC Genomics, 2014, 15, 642.	1.2	24
175	Collection, integration and analysis of cancer genomic profiles: from data to insight. Current Opinion in Genetics and Development, 2014, 24, 92-98.	1.5	22
176	Ribonucleotide reductase small subunit M2 is a master driver of aggressive prostate cancer. Molecular Oncology, 2020, 14, 1881-1897.	2.1	22
177	Expression patterns of mitotic and meiotic cell cycle regulators in testicular cancer and development. International Journal of Cancer, 2005, 116, 207-217.	2.3	21
178	MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer. Nucleic Acids Research, 2016, 44, D986-D991.	6.5	21
179	FOLFCIS Treatment and Genomic Correlates of Response in Advanced Anal Squamous Cell Cancer. Clinical Colorectal Cancer, 2019, 18, e39-e52.	1.0	21
180	CD38 in Advanced Prostate Cancers. European Urology, 2021, 79, 736-746.	0.9	21

#	Article	IF	CITATIONS
181	Correlation Between Surrogate End Points and Overall Survival in a Multi-institutional Clinicogenomic Cohort of Patients With Non–Small Cell Lung or Colorectal Cancer. JAMA Network Open, 2021, 4, e2117547.	2.8	20
182	ARF Confers a Context-Dependent Response to Chemotherapy in Muscle-Invasive Bladder Cancer. Cancer Research, 2017, 77, 1035-1046.	0.4	15
183	Distinct Genomic Profiles are Associated With Conversion to Resection and Survival in Patients With Initially Unresectable Colorectal Liver Metastases Treated With Systemic and Hepatic Artery Chemotherapy. Annals of Surgery, 2022, 276, e474-e482.	2.1	15
184	Molecular and phenotypic profiling of colorectal cancer patients in West Africa reveals biological insights. Nature Communications, 2021, 12, 6821.	5.8	15
185	Phase II study of trastuzumab with modified docetaxel, cisplatin, and 5 fluorouracil in metastatic HER2-positive gastric cancer. Gastric Cancer, 2019, 22, 355-362.	2.7	11
186	Systemic Chemotherapy for Metastatic Colitis-Associated Cancer Has a Worse Outcome Than Sporadic Colorectal Cancer: Matched Case Cohort Analysis. Clinical Colorectal Cancer, 2020, 19, e151-e156.	1.0	11
187	Genomic and Metabolic Hallmarks of SDH- and FH-deficient Renal Cell Carcinomas. European Urology Focus, 2022, 8, 1278-1288.	1.6	11
188	G2S: a web-service for annotating genomic variants on 3D protein structures. Bioinformatics, 2018, 34, 1949-1950.	1.8	10
189	Efficacy of Combined VEGFR1-3, PDGFα/β, and FGFR1-3 Blockade Using Nintedanib for Esophagogastric Cancer. Clinical Cancer Research, 2019, 25, 3811-3817.	3.2	10
190	Regorafenib in Combination with Firstâ€Line Chemotherapy for Metastatic Esophagogastric Cancer. Oncologist, 2020, 25, e68-e74.	1.9	10
191	Genomic stratification beyond Ras/Bâ€Raf in colorectal liver metastasis patients treated with hepatic arterial infusion. Cancer Medicine, 2019, 8, 6538-6548.	1.3	8
192	Next-Generation Sequencing of 487 Esophageal Adenocarcinomas Reveals Independently Prognostic Genomic Driver Alterations and Pathways. Clinical Cancer Research, 2021, 27, 3491-3498.	3.2	8
193	A pan-cancer survey of cell line tumor similarity by feature-weighted molecular profiles. Cell Reports Methods, 2021, 1, 100039.	1.4	8
194	Recent Advances in Systems and Network Medicine: Meeting Report from the First International Conference in Systems and Network Medicine. Systems Medicine (New Rochelle, N Y), 2020, 3, 22-35.	1.4	7
195	Translational Bioinformatics and Clinical Research (Biomedical) Informatics. Clinics in Laboratory Medicine, 2016, 36, 153-181.	0.7	6
196	Real-World Outcomes of an Automated Physician Support System for Genome-Driven Oncology. JCO Precision Oncology, 2019, 3, 1-13.	1.5	6
197	Translational Bioinformatics and Clinical Research (Biomedical) Informatics. Surgical Pathology Clinics, 2015, 8, 269-288.	0.7	5
198	Primary Tumor Location and Outcomes After Cytoreductive Surgery and Intraperitoneal Chemotherapy for Peritoneal Metastases of Colorectal Origin. Annals of Surgical Oncology, 2021, 28, 1109-1117.	0.7	5

#	Article	IF	CITATIONS
199	Integrative genome-wide analysis of the determinants of RNA splicing in kidney renal clear cell carcinoma. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2015, , 44-55.	0.7	5
200	Defining and Targeting Esophagogastric Cancer Genomic Subsets With Patient-Derived Xenografts. JCO Precision Oncology, 2022, 6, e2100242.	1.5	5
201	Association of genomic profiles and survival in early onset and screeningâ€age colorectal cancer patients with liver metastases resected over 15 years. Journal of Surgical Oncology, 2022, 125, 880-888.	0.8	4
202	Genome Nexus: A Comprehensive Resource for the Annotation and Interpretation of Genomic Variants in Cancer. JCO Clinical Cancer Informatics, 2022, 6, e2100144.	1.0	4
203	Computational methods and translational applications for targeted nextâ€generation sequencing platforms. Genes Chromosomes and Cancer, 2022, 61, 322-331.	1.5	3
204	Distinct Genomic Landscapes in Early-Onset and Late-Onset Endometrial Cancer. JCO Precision Oncology, 2022, 6, e2100401.	1.5	3
205	Exploring the clinical significance of serous tubal intraepithelial carcinoma associated with advanced high-grade serous ovarian cancer: A Memorial Sloan Kettering Team Ovary Study. Gynecologic Oncology, 2021, 160, 696-703.	0.6	2
206	Data Portals and Analysis. , 2019, , 169-196.		1
207	Spermatogonial Stem Cells in the Rat and Mouse. , 2004, , 179-185.		1