

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1094947/publications.pdf Version: 2024-02-01

\\/FLLI

#	Article	IF	CITATIONS
1	Biphase Stratification Approach to Three-Dimensional Dendritic Biodegradable Mesoporous Silica Nanospheres. Nano Letters, 2014, 14, 923-932.	9.1	639
2	Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr). Chemical Engineering Journal, 2012, 183, 60-67.	12.7	206
3	Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresource Technology, 2015, 183, 93-100.	9.6	174
4	Alternative synthesis of bulk and supported nickel phosphide from the thermal decomposition of hypophosphites. Journal of Catalysis, 2009, 263, 1-3.	6.2	120
5	A novel synthetic approach to synthesizing bulk and supported metal phosphides. Journal of Catalysis, 2010, 271, 413-415.	6.2	116
6	Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. ACS Applied Materials & Interfaces, 2015, 7, 17450-17459.	8.0	110
7	Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au–Co(III)–Cu(II) catalysts. Journal of Catalysis, 2014, 316, 141-148.	6.2	108
8	Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Materials Research Bulletin, 2012, 47, 4305-4310.	5.2	96
9	Highly Efficient Ru@IL/AC To Substitute Mercuric Catalyst for Acetylene Hydrochlorination. ACS Catalysis, 2017, 7, 3510-3520.	11.2	93
10	Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Frontiers of Chemical Science and Engineering, 2011, 5, 514-520.	4.4	92
11	Deactivation mechanism of AuCl3 catalyst in acetylene hydrochlorination reaction: a DFT study. RSC Advances, 2012, 2, 4814.	3.6	84
12	Microwaveâ€Assisted Synthesis of HKUSTâ€1 and Functionalized HKUSTâ€1â€@H ₃ PW ₁₂ 0 ₄₀ : Selective Adsorption of Heavy Metal Ions in Water Analyzed with Synchrotron Radiation. ChemPhysChem, 2013, 14, 2825-2832.	2.1	83
13	Ru-Co(III)-Cu(II)/SAC catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental, 2016, 189, 56-64.	20.2	83
14	Active ruthenium species in acetylene hydrochlorination. Applied Catalysis A: General, 2014, 488, 28-36.	4.3	82
15	Zirconyl chloride: an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron, 2009, 65, 6204-6210.	1.9	81
16	Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination. Scientific Reports, 2017, 7, 39789.	3.3	79
17	Single-Atom Au ^I –N ₃ Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870.	11.2	76
18	A feasible approach to the synthesis of nickel phosphide for hydrodesulfurization. Journal of Catalysis, 2013, 299, 1-9.	6.2	75

#	Article	IF	CITATIONS
19	Synthesis of Nickel Nanoparticles Supported on Boehmite for Selective Hydrogenation of p-Nitrophenol and p-Chloronitrobenzene. Catalysis Letters, 2010, 137, 261-266.	2.6	73
20	MOF-derived nitrogen-doped porous carbon as metal-free catalysts for acetylene hydrochlorination. Journal of Industrial and Engineering Chemistry, 2016, 44, 146-154.	5.8	70
21	Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant. Chemosphere, 2008, 72, 53-58.	8.2	67
22	Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination. Journal of Catalysis, 2018, 359, 161-170.	6.2	63
23	N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination. Chemical Engineering Journal, 2019, 371, 118-129.	12.7	62
24	Expanded graphite applied in the catalytic process as a catalyst support. Catalysis Today, 2007, 125, 278-281.	4.4	60
25	N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery. Journal of Energy Chemistry, 2020, 49, 14-21.	12.9	59
26	Bimetallic Au–Sn/AC catalysts for acetylene hydrochlorination. Journal of Industrial and Engineering Chemistry, 2016, 35, 177-184.	5.8	55
27	Synthesis of nickel nanoparticles supported on metal oxides using electroless plating: Controlling the dispersion and size of nickel nanoparticles. Journal of Colloid and Interface Science, 2009, 330, 359-366.	9.4	53
28	Hydrodeoxygenation of methyl palmitate over MCM-41 supported nickel phosphide catalysts. Catalysis Today, 2016, 259, 467-473.	4.4	50
29	Effect of template in MCM-41 on the adsorption of aniline from aqueous solution. Journal of Environmental Management, 2011, 92, 2939-2943.	7.8	49
30	N-doped ordered mesoporous carbon (N-OMC) confined Fe3O4-FeCx heterojunction for efficient conversion of CO2 to light olefins. Applied Catalysis B: Environmental, 2021, 299, 120639.	20.2	47
31	New Approach to the Synthesis of Bulk and Supported Bimetallic Molybdenum Nitrides. Chemistry of Materials, 2005, 17, 3262-3267.	6.7	46
32	Investigation on hydroisomerization and hydrocracking of C15–C18 n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel. Catalysis Today, 2019, 330, 109-116.	4.4	46
33	Conformal Coating of Co/Nâ€Đoped Carbon Layers into Mesoporous Silica for Highly Efficient Catalytic Dehydrogenation–Hydrogenation Tandem Reactions. Small, 2017, 13, 1702243.	10.0	45
34	Typical transition metal single-atom catalysts with a metal-pyridine N structure for efficient CO2 electroreduction. Applied Catalysis B: Environmental, 2021, 296, 120331.	20.2	44
35	Synthesis and characterization of a porous amorphous Ni–B catalyst on titania by silver-catalyzed electroless plating. Journal of Materials Chemistry, 2005, 15, 4928.	6.7	43
36	Study of the active site for acetylene hydrochlorination in AuCl3/C catalysts. Journal of Catalysis, 2015, 330, 273-279.	6.2	43

#	Article	IF	CITATIONS
37	The Synergistic Effect of CuZnCeO _x in Controlling the Formation of Methanol and CO from CO ₂ Hydrogenation. ChemCatChem, 2018, 10, 4438-4449.	3.7	42
38	Sulfolene Hydrogenation over an Amorphous Niâ^'B Alloy Catalyst on MgO. Industrial & Engineering Chemistry Research, 2006, 45, 2229-2234.	3.7	41
39	The synthesis and investigation of ruthenium phosphide catalysts. Catalysis Communications, 2011, 14, 114-117.	3.3	41
40	Hydrochlorination of acetylene catalyzed by an activated carbon supported chlorotriphenylphosphine gold complex. Catalysis Science and Technology, 2016, 6, 7946-7955.	4.1	38
41	The synthesis and mechanistic studies of a highly active nickel phosphide catalyst for naphthalene hydrodearomatization. RSC Advances, 2017, 7, 8677-8687.	3.6	38
42	Diminishing the Uncoordinated N Species in Co-N-C Catalysts toward Highly Efficient Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 2513-2521.	11.2	38
43	The interactions between the NiB amorphous alloy and TiO2 support in the NiB/TiO2 amorphous catalysts. Applied Catalysis A: General, 2004, 259, 185-190.	4.3	36
44	Preparation and catalytic properties of amorphous alloys in hydrogenation of sulfolene. Applied Catalysis A: General, 2003, 243, 215-223.	4.3	35
45	Copper Clusters Encapsulated in Carbonaceous Mesoporous Silica Nanospheres for the Valorization of Biomass-Derived Molecules. ACS Catalysis, 2022, 12, 5711-5725.	11.2	34
46	Pd/Câ€Catalyzed Synthesis of Isoquinolones through CH Activation. ChemCatChem, 2015, 7, 605-608.	3.7	33
47	Improvement of imidazolium-based ionic liquids on the activity of ruthenium catalyst for acetylene hydrochlorination. Molecular Catalysis, 2017, 443, 220-227.	2.0	33
48	High performance of supported Cu-based catalysts modulated via phosphamide coordination in acetylene hydrochlorination. Applied Catalysis A: General, 2020, 591, 117408.	4.3	32
49	Synthesis of a Pd on Ni–B nanoparticle catalyst by the replacement reaction method for hydrodechlorination. Journal of Catalysis, 2008, 256, 323-330.	6.2	31
50	Nondestructive construction of Lewis acid sites on the surface of supported nickel phosphide catalysts by atomic-layer deposition. Journal of Catalysis, 2018, 361, 12-22.	6.2	30
51	Constructing a fragmentary g-C ₃ N ₄ framework with rich nitrogen defects as a highly efficient metal-free catalyst for acetylene hydrochlorination. Catalysis Science and Technology, 2019, 9, 3753-3762.	4.1	30
52	ZIF-supported AuCu nanoalloy for ammonia electrosynthesis from nitrogen and thin air. Journal of Materials Chemistry A, 2020, 8, 8868-8874.	10.3	30
53	Controlled Synthesis of Supported Nickel Boride Catalyst Using Electroless Plating. Journal of Physical Chemistry C, 2007, 111, 8587-8593.	3.1	29
54	Bio-friendly controllable synthesis of silver nanoparticles and their enhanced antibacterial property. Catalysis Today, 2019, 327, 196-202.	4.4	28

#	Article	IF	CITATIONS
55	A promising single-atom Co-N-C catalyst for efficient CO2 electroreduction and high-current solar conversion of CO2 to CO. Applied Catalysis B: Environmental, 2022, 304, 120958.	20.2	28
56	Eco-friendly controllable synthesis of highly dispersed ZIF-8 embedded in porous Al2O3 and its hydrogenation properties after encapsulating Pt nanoparticles. Applied Catalysis B: Environmental, 2018, 227, 13-23.	20.2	26
57	Ultra low temperature CO and HC oxidation over Cu-based mixed oxides for future automotive applications. Applied Catalysis B: Environmental, 2014, 160-161, 365-373.	20.2	25
58	Non-mercury catalytic acetylene hydrochlorination over activated carbon-supported Au catalysts promoted by CeO ₂ . Catalysis Science and Technology, 2016, 6, 1821-1828.	4.1	23
59	Demystifying the mechanism of NMP ligands in promoting Cu-catalyzed acetylene hydrochlorination: insights from a density functional theory study. Inorganic Chemistry Frontiers, 2020, 7, 3204-3216.	6.0	23
60	Advances in chemical synthesis and application of metal-metalloid amorphous alloy nanoparticulate catalysts. Frontiers of Chemical Engineering in China, 2007, 1, 87-95.	0.6	22
61	Preparation of mesoporous TiO2–C composites as an advanced Ni catalyst support for reduction of 4-nitrophenol. New Journal of Chemistry, 2016, 40, 4200-4205.	2.8	21
62	Constructing Pyridinic N-Rich Aromatic Ladder Structure Catalysts from Industrially Available Polyacrylonitrile Resin for Acetylene Hydrochlorination. ACS Sustainable Chemistry and Engineering, 2019, 7, 17979-17989.	6.7	21
63	A Potential Regularity for Enhancing the Hydrogenation Properties of Ni ₂ P. Journal of Physical Chemistry C, 2015, 119, 2557-2565.	3.1	20
64	Nitrogen-Doped Carbon Cages Encapsulating CuZn Alloy for Enhanced CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 25100-25107.	8.0	20
65	Selective hydrogenation of CO ₂ over a Ce promoted Cu-based catalyst confined by SBA-15. Inorganic Chemistry Frontiers, 2019, 6, 1799-1812.	6.0	20
66	Hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol on NiB/SiO2 amorphous alloy catalyst. Frontiers of Chemical Engineering in China, 2007, 1, 151-154.	0.6	19
67	Rapid controllable synthesis of Al-MIL-96 and its adsorption of nitrogenous VOCs. Catalysis Today, 2015, 258, 132-138.	4.4	19
68	Comparison of four different synthetic routes of Ni ₂ P/TiO ₂ –Al ₂ O ₃ catalysts for hydrodesulfurization of dibenzothiophene. RSC Advances, 2015, 5, 38774-38782.	3.6	19
69	MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination. Molecular Catalysis, 2019, 479, 110612.	2.0	19
70	Anchoring strategy for highly active copper nanoclusters in hydrogenation of renewable biomass-derived compounds. Applied Catalysis B: Environmental, 2021, 299, 120651.	20.2	19
71	Low-Temperature Approach to Synthesize Iron Nitride from Amorphous Iron. Inorganic Chemistry, 2008, 47, 1261-1263.	4.0	18
72	New Approach for Highly Active Ni ₂ P Catalyst through Hydrogenâ€Thermal Treatment of Nickel(II)â€Triphenylphosphine Complex. Chemistry - an Asian Journal, 2009, 4, 1794-1797.	3.3	18

#	Article	IF	CITATIONS
73	Novel Ni2Mo3N/zeolite catalysts used for aromatics hydrogenation as well as polycyclic hydrocarbon ring opening. Catalysis Communications, 2005, 6, 656-660.	3.3	17
74	Synthesis of bulk and supported nickel phosphide using microwave radiation for hydrodeoxygenation of methyl palmitate. RSC Advances, 2015, 5, 53623-53628.	3.6	15
75	Catalytic performance and deoxygenation path of methyl palmitate on Ni ₂ P/SiO ₂ synthesized using the thermal decomposition of nickel hypophosphite. RSC Advances, 2016, 6, 31308-31315.	3.6	15
76	Pd/C-catalyzed synthesis of N -aryl and N -alkyl isoquinolones via C H/N H activation. Catalysis Today, 2017, 297, 292-297.	4.4	15
77	Synthesis of a supported nickel boride catalyst under microwave irradiation. Catalysis Communications, 2008, 9, 1432-1438.	3.3	14
78	Deoxygenation of methyl palmitate over SiO ₂ -supported nickel phosphide catalysts: effects of pressure and kinetic investigation. RSC Advances, 2015, 5, 107533-107539.	3.6	14
79	In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. ACS Applied Materials & amp; Interfaces, 2022, 14, 17195-17207.	8.0	14
80	Morphologically controlled synthesis of mesoporous alumina using sodium lauroyl glutamate surfactant. Materials Letters, 2010, 64, 1858-1860.	2.6	13
81	The synthesis and evaluation of highly active Ni2P–MoS2 catalysts using the decomposition of hypophosphites. Catalysis Science and Technology, 2012, 2, 2356.	4.1	13
82	Facile inâ€situ Encapsulation of Highly Dispersed Ni@MCMâ€41 for the Transâ€Decalin Production from Hydrogenation of Naphthalene at Low Temperature. ChemCatChem, 2019, 11, 1286-1294.	3.7	13
83	Phosphine-oxide organic ligand improved Cu-based catalyst for acetylene hydrochlorination. Applied Catalysis A: General, 2022, 630, 118461.	4.3	13
84	Regulating the coordination environment of Ru single-atom catalysts and unravelling the reaction path of acetylene hydrochlorination. Green Energy and Environment, 2023, 8, 1141-1153.	8.7	13
85	Efficient adsorption and desorption of Pb2+ from aqueous solution. Journal of Environmental Chemical Engineering, 2013, 1, 838-843.	6.7	12
86	Controllable Assembly of Al-MIL-100 via an Inducing Occupied Effect and Its Selective Adsorption Activity. Crystal Growth and Design, 2016, 16, 3639-3646.	3.0	12
87	Active centre and reactivity descriptor of a green single component imidazole catalyst for acetylene hydrochlorination. Physical Chemistry Chemical Physics, 2020, 22, 2849-2857.	2.8	12
88	A novel Ni2Mo3N/MCM41 catalyst for the hydrogenation of aromatics. Catalysis Letters, 2005, 100, 73-77.	2.6	11
89	Reaction mechanisms of acetylene hydrochlorination catalyzed by AuCl3/C catalysts: A density functional study. Catalysis Communications, 2017, 101, 120-124.	3.3	11
90	Relationship between Pt particle size and catalyst activity for catalytic oxidation of ultrahigh oncentration formaldehyde. Applied Organometallic Chemistry, 2019, 33, e5217.	3.5	11

#	Article	IF	CITATIONS
91	Constructing green mercury-free catalysts with single pyridinic N species for acetylene hydrochlorination and mechanism investigation. Catalysis Science and Technology, 2021, 11, 2327-2339.	4.1	10
92	Selective Catalytic Reduction of NO <i>_x</i> by Methanol on Metal-Free Zeolite with BrĄ̃,nsted and Lewis Acid Pair. ACS Catalysis, 2022, 12, 2403-2414.	11.2	10
93	Metal–organic frameworkâ€derived cobalt and nitrogen coâ€doped porous carbon with fourâ€coordinated Co–N _{<i>x</i>} for efficient acetylene hydrochlorination. Applied Organometallic Chemistry, 2018, 32, e4570.	3.5	9
94	DFT studies on the mechanism of acetylene hydrochlorination over gold-based catalysts and guidance for catalyst construction. Inorganic Chemistry Frontiers, 2019, 6, 2944-2952.	6.0	9
95	Molecular design of ionic liquids as novel non-metal catalysts for the acetylene hydrochlorination reaction. Physical Chemistry Chemical Physics, 2019, 21, 7635-7644.	2.8	7
96	Tuning hydrodearomatization performance of interstitial NixW alloy catalyst by controlling the doping of a small amount of tungsten. Catalysis Today, 2021, 364, 202-210.	4.4	7
97	A photo-assisted electrochemical-based demonstrator for green ammonia synthesis. Journal of Energy Chemistry, 2022, 68, 826-834.	12.9	7
98	Preparation of Silica Sol-Supported NiB Nanoclusters and Their Catalytic Hydrogenation Performance. Chinese Journal of Catalysis, 2009, 30, 89-91.	14.0	6
99	Efficient hydrogenation performance improvement of MoP and Ni ₂ P catalysts by adjusting the electron distribution around Mo and Ni atoms. RSC Advances, 2016, 6, 65081-65088.	3.6	6
100	Mechanism exploring of acetylene hydrochlorination using hexamethylenetetramine as a single active site metal-free catalyst. Catalysis Communications, 2020, 147, 106147.	3.3	6
101	Directly converting cellulose into high yield sorbitol by tuning the electron structure of Ru2P anchored in agricultural straw biochar. Journal of Cleaner Production, 2022, 362, 132364.	9.3	6
102	Adjusting the active sites of Cu and ZnO by coordination effect of H ₃ BTC and its influence on enhanced RWGS reaction. Sustainable Energy and Fuels, 2020, 4, 2937-2949.	4.9	5
103	Synthesis of bulk and alumina-supported γ-Mo2N catalysts by a single-step complex decomposition method. Catalysis Today, 2008, 131, 156-161.	4.4	4
104	Constructing the singleâ€site of pyridineâ€based organic compounds for acetylene hydrochlorination: From theory to experiment. Applied Organometallic Chemistry, 2021, 35, e6318.	3.5	4
105	Controllable assembly of Fe ₃ O ₄ –Fe ₃ C@MC by <i>in situ</i> doping of Mn for CO ₂ selective hydrogenation to light olefins. Catalysis Science and Technology, 2022, 12, 2360-2368.	4.1	4
106	Modulation of MIL-101(Cr) morphology and selective removal of dye from water. Journal of the Iranian Chemical Society, 2021, 18, 159-166.	2.2	3
107	Synthesis and Magnetic Property of Fe-B Amorphous Alloy Nanowires by Inducing DC Magnetic Field. Acta Physico-chimica Sinica, 2008, 24, 927-931.	0.6	2
108	Synthesis of Efficient Oil-Soluble ZnAl2O4 Nanoparticles. Asian Journal of Chemistry, 2013, 25, 2729-2732.	0.3	1