
Wilhelm Schäfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10948266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16892-16897.	7.1	565
2	A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant Journal, 2005, 42, 364-375.	5.7	312
3	Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Molecular Plant Pathology, 2006, 7, 449-461.	4.2	266
4	Candida albicans Hyphal Formation and the Expression of the Efg1-Regulated Proteinases Sap4 to Sap6 Are Required for the Invasion of Parenchymal Organs. Infection and Immunity, 2002, 70, 3689-3700.	2.2	235
5	Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology, 2011, 11, 110.	3.6	232
6	Glycosylphosphatidylinositol-anchored Proteases of Candida albicans Target Proteins Necessary for Both Cellular Processes and Host-Pathogen Interactions. Journal of Biological Chemistry, 2006, 281, 688-694.	3.4	222
7	Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Molecular Microbiology, 1999, 34, 169-180.	2.5	209
8	Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Molecular Microbiology, 1998, 29, 605-615.	2.5	199
9	Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Current Genetics, 2003, 43, 87-95.	1.7	197
10	Secreted lipases of Candida albicans : cloning, characterisation and expression analysis of a new gene family with at least ten members. Archives of Microbiology, 2000, 174, 362-374.	2.2	185
11	Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genetics and Biology, 2005, 42, 420-433.	2.1	175
12	Evidence that Members of the Secretory Aspartyl Proteinase Gene Family, in Particular <i>SAP2,</i> Are Virulence Factors for <i>Candida</i> Vaginitis. Journal of Infectious Diseases, 1999, 179, 201-208.	4.0	164
13	Secreted Fungal Effector Lipase Releases Free Fatty Acids to Inhibit Innate Immunity-Related Callose Formation during Wheat Head Infection Â. Plant Physiology, 2014, 165, 346-358.	4.8	130
14	Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. Journal of Clinical Investigation, 2007, 117, 3049-3058.	8.2	124
15	Molecular Mechanisms of Fungal Pathogenicity to Plants. Annual Review of Phytopathology, 1994, 32, 461-477.	7.8	121
16	Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genetics and Biology, 2007, 44, 1336-1341.	2.1	115
17	The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes. Current Genetics, 2005, 47, 29-36.	1.7	105
18	Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy, 2012, 8, 326-337.	9.1	99

WILHELM SCHÄR

#	Article	IF	CITATIONS
19	Developing Kernel and Rachis Node Induce the Trichothecene Pathway of <i>Fusarium graminearum</i> During Wheat Head Infection. Molecular Plant-Microbe Interactions, 2009, 22, 899-908.	2.6	96
20	<i>PTK1</i> , a Mitogen-Activated-Protein Kinase Gene, Is Required for Conidiation, Appressorium Formation, and Pathogenicity of <i>Pyrenophora teres</i> on Barley. Molecular Plant-Microbe Interactions, 2001, 14, 116-125.	2.6	93
21	Expression analysis of the lipase gene family during experimental infections and in patient samples. FEMS Yeast Research, 2004, 4, 401-408.	2.3	89
22	Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genetics and Biology, 2011, 48, 217-224.	2.1	80
23	Lipase 8 Affects the Pathogenesis of <i>Candida albicans</i> . Infection and Immunity, 2007, 75, 4710-4718.	2.2	75
24	The ATF/CREB Transcription Factor Atf1 Is Essential for Full Virulence, Deoxynivalenol Production, and Stress Tolerance in the Cereal Pathogen <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2013, 26, 1378-1394.	2.6	74
25	A Fusarium graminearum xylanase expressed during wheat infection is a necrotizing factor but is not essential for virulence. Plant Physiology and Biochemistry, 2013, 64, 1-10.	5.8	70
26	Molecular Keys to the Janthinobacterium and Duganella spp. Interaction with the Plant Pathogen Fusarium graminearum. Frontiers in Microbiology, 2016, 7, 1668.	3.5	66
27	The role and relevance of phospholipase D1 during growth and dimorphism of Candida albicans. Microbiology (United Kingdom), 2001, 147, 879-889.	1.8	65
28	The Stress-Activated Protein Kinase FgOS-2 Is a Key Regulator in the Life Cycle of the Cereal Pathogen <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1142-1156.	2.6	62
29	Development of a highly efficient gene targeting system for using the disruption of a polyketide synthase gene as a visible marker. FEMS Yeast Research, 2005, 5, 653-662.	2.3	58
30	In Vivo Expression and Localization of Candida albicans Secreted Aspartyl Proteinases during Oral Candidiasis in HIV-Infected Patients. Journal of Investigative Dermatology, 1999, 112, 383-386.	0.7	53
31	Metabolic profiling of wheat rachis node infection by <i>Fusarium graminearum</i> – decoding deoxynivalenolâ€dependent susceptibility. New Phytologist, 2019, 221, 459-469.	7.3	52
32	Individual acid aspartic proteinases (Saps) 1-6 of Candida albicans are not essential for invasion and colonization of the gastrointestinal tract in mice. Microbial Pathogenesis, 2002, 32, 61-70.	2.9	49
33	Synergistic Effect of Different Plant Cell Wall–Degrading Enzymes Is Important for Virulence of <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2017, 30, 886-895.	2.6	49
34	The KEX2 gene of Candida glabrata is required for cell surface integrity. Molecular Microbiology, 2001, 41, 1431-1444.	2.5	45
35	Different Hydrophobins of Fusarium graminearum Are Involved in Hyphal Growth, Attachment, Water-Air Interface Penetration and Plant Infection. Frontiers in Microbiology, 2019, 10, 751.	3.5	44
36	Enhanced mycotoxin production of a lipase-deficient Fusarium graminearum mutant correlates to toxin-related gene expression. European Journal of Plant Pathology, 2007, 117, 1-12.	1.7	42

Wilhelm SchÄper

#	Article	IF	CITATIONS
37	Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology (United Kingdom), 2005, 151, 3381-3394.	1.8	39
38	The Adenylyl Cyclase Plays a Regulatory Role in the Morphogenetic Switch from Vegetative to Pathogenic Lifestyle of Fusarium graminearum on Wheat. PLoS ONE, 2014, 9, e91135.	2.5	38
39	Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators. Nature Communications, 2019, 10, 3579.	12.8	36
40	Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection. Plant Physiology and Biochemistry, 2016, 109, 220-229.	5.8	34
41	Infection cushions of Fusarium graminearum are fungal arsenals for wheat infection. Molecular Plant Pathology, 2020, 21, 1070-1087.	4.2	33
42	Direct transformation of a clinical isolate ofCandida parapsilosisusing a dominant selection marker. FEMS Microbiology Letters, 2005, 245, 117-121.	1.8	31
43	<i>Fusarium graminearum</i> Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity. Phytopathology, 2014, 104, 1201-1207.	2.2	30
44	The Fusarium graminearum cerato-platanins loosen cellulose substrates enhancing fungal cellulase activity as expansin-like proteins. Plant Physiology and Biochemistry, 2019, 139, 229-238.	5.8	30
45	Disruption of the <scp>GABA</scp> shunt affects mitochondrial respiration and virulence in the cereal pathogen <scp><i>F</i></scp> <i>usarium graminearum</i> . Molecular Microbiology, 2015, 98, 1115-1132.	2.5	28
46	Enzymatic properties and expression patterns of five extracellular lipases of Fusarium graminearum in vitro. Enzyme and Microbial Technology, 2010, 46, 479-486.	3.2	26
47	Involvement of Fungal Pectin Methylesterase Activity in the Interaction Between <i>Fusarium graminearum</i> and Wheat. Molecular Plant-Microbe Interactions, 2016, 29, 258-267.	2.6	26
48	CbCTB2, an O-methyltransferase is essential for biosynthesis of the phytotoxin cercosporin and infection of sugar beet by Cercospora beticola. BMC Plant Biology, 2013, 13, 50.	3.6	24
49	Trichothecenes and lipases are host-induced and secreted virulence factors ofFusarium graminearum. Cereal Research Communications, 2008, 36, 421-428.	1.6	23
50	Acetylsalicylic acid (aspirin) reduces damage to reconstituted human tissues infected with Candida species by inhibiting extracellular fungal lipases. Microbes and Infection, 2009, 11, 1131-1139.	1.9	21
51	The secreted lipase FGL1 is sufficient to restore the initial infection step to the apathogenic Fusarium graminearum MAP kinase disruption mutant Δgpmk1. European Journal of Plant Pathology, 2012, 134, 23-37.	1.7	20
52	Investigations on the ability of <i>Fhb1</i> to protect wheat against nivalenol and deoxynivalenol. Cereal Research Communications, 2008, 36, 429-435.	1.6	18
53	Expression of a Structural Protein of the Mycovirus FgV-ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum. Journal of Virology, 2018, 92, .	3.4	18
54	Preventing Fusarium Head Blight of Wheat and Cob Rot of Maize by Inhibition of Fungal Deoxyhypusine Synthase. Molecular Plant-Microbe Interactions, 2011, 24, 619-627.	2.6	14

#	Article	IF	CITATIONS
55	Posttranslational hypusination of the eukaryotic translation initiation factor-5A regulates Fusarium graminearum virulence. Scientific Reports, 2016, 6, 24698.	3.3	14
56	Comparative Genomics of Eight Fusarium graminearum Strains with Contrasting Aggressiveness Reveals an Expanded Open Pangenome and Extended Effector Content Signatures. International Journal of Molecular Sciences, 2021, 22, 6257.	4.1	12
57	A green fluorescent protein-transformed Mycosphaerella fijiensis strain shows increased aggressiveness on banana. Australasian Plant Pathology, 2012, 41, 645-647.	1.0	8
58	Genomics of Candida albicans. Applied Mycology and Biotechnology, 2004, 4, 99-135.	0.3	0