
Saugata Datta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10947854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: A review. Planetary and Space Science, 2010, 58, 592-598.	1.7	126
2	Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility. Applied Geochemistry, 2017, 77, 194-205.	3.0	86
3	Controls on tungsten concentrations in groundwater flow systems: The role of adsorption, aquifer sediment Fe(III) oxide/oxyhydroxide content, and thiotungstate formation. Chemical Geology, 2013, 351, 76-94.	3.3	78
4	Perennial ponds are not an important source of water or dissolved organic matter to groundwaters with high arsenic concentrations in West Bengal, India. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	77
5	Influence of monsoonal recharge on arsenic and dissolved organic matter in the Holocene and Pleistocene aquifers of the Bengal Basin. Science of the Total Environment, 2018, 637-638, 588-599.	8.0	54
6	Tungsten Contamination of Soils and Sediments: Current State of Science. Current Pollution Reports, 2017, 3, 55-64.	6.6	41
7	Biogeochemical Controls on the Release and Accumulation of Mn and As in Shallow Aquifers, West Bengal, India. Frontiers in Environmental Science, 2017, 5, .	3.3	40
8	Use of X-ray Absorption Spectroscopy To Speciate Manganese in Airborne Particulate Matter from Five Counties Across the United States. Environmental Science & Technology, 2012, 46, 3101-3109.	10.0	37
9	Changing recharge pathways within an intensively pumped aquifer with high fluoride concentrations in Central Mexico. Science of the Total Environment, 2018, 622-623, 1029-1045.	8.0	32
10	Biogeochemical and reactive transport modeling of arsenic in groundwaters from the Mississippi River delta plain: An analog for the As-affected aquifers of South and Southeast Asia. Geochimica Et Cosmochimica Acta, 2019, 264, 245-272.	3.9	26
11	Investigation of tungstate thiolation reaction kinetics and sedimentary molybdenum/tungsten enrichments: Implication for tungsten speciation in sulfidic waters and possible applications for paleoredox studies. Geochimica Et Cosmochimica Acta, 2020, 287, 277-295.	3.9	24
12	Geochemistry of Tungsten and Arsenic in Aquifer Systems: A Comparative Study of Groundwaters from West Bengal, India, and Nevada, USA. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	23
13	Occurrence and distribution of high arsenic in sediments and groundwater of the ClaromecÃ ³ fluvial basin, southern Pampean plain (Argentina). Science of the Total Environment, 2019, 695, 133673.	8.0	18
14	Origin of tungsten and geochemical controls on its occurrence and mobilization in shallow sediments from Fallon, Nevada, USA. Chemosphere, 2020, 260, 127577.	8.2	17
15	Effects of acidification on the optical properties of dissolved organic matter from high and low arsenic groundwater and surface water. Science of the Total Environment, 2019, 653, 1326-1332.	8.0	15
16	Mobilization of co-occurring trace elements (CTEs) in arsenic contaminated aquifers in the Bengal basin. Applied Geochemistry, 2020, 122, 104709.	3.0	14
17	Pleistocene sands of the Mississippi River Alluvial Aquifer produce the highest groundwater arsenic concentrations in southern Louisiana, USA. Journal of Hydrology, 2021, 595, 125995.	5.4	7
18	Geochemical interactions among water, minerals, microbes, and organic matter in formation of speleothems in volcanic (lava tube) caves. Chemical Geology, 2022, 594, 120759.	3.3	4

#	Article	IF	CITATIONS
19	Isolation and Characterization of Soil Bacteria from an Abandoned Coal Mine in Southeast Kansas. Transactions of the Kansas Academy of Science, 2020, 123, .	0.1	2