B V Subba Reddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10947172/publications.pdf

Version: 2024-02-01

49 papers

2,108 citations

218677 26 h-index 233421 45 g-index

58 all docs 58 docs citations

58 times ranked 2061 citing authors

#	Article	IF	CITATIONS
1	Modulating Prins Cyclization <i>versus</i> Tandem Prins Processes for the Synthesis of Hexahydroâ€1 <i>H</i> â€pyrano[3,4â€ <i>c</i>]chromenes. European Journal of Organic Chemistry, 2021, 2021, 138-145.	2.4	9
2	Recent Advances in Prins Spirocyclization. European Journal of Organic Chemistry, 2017, 2017, 5484-5496.	2.4	41
3	Rhodium-catalyzed cycloaddition of carbonyl ylides for the synthesis of spiro[furo[2,3-a]xanthene-2,3′-indolin]-2′-one scaffolds. RSC Advances, 2016, 6, 50497-50499.	3.6	10
4	Substrate Directed Câ€"H Activation for the Synthesis of Benzo[<i><</i> /i>]cinnolines through a Sequential Câ€"C and Câ€"N Bond Formation. Organic Letters, 2015, 17, 3730-3733.	4.6	56
5	Prinsâ€Driven Friedel–Crafts Reaction for the Stereoselective Synthesis of Hexahydroindeno[2,1â€ <i>c</i>]pyran Derivatives. Asian Journal of Organic Chemistry, 2015, 4, 1266-1272.	2.7	7
6	Stereoselective Synthesis of Hexahydro-1 <i>H</i> -spiro[isoquinoline-4,4′-pyran] Scaffolds through an Intramolecular Prins Cascade Process. Journal of Organic Chemistry, 2015, 80, 653-660.	3.2	29
7	Stereoselective Synthesis of Spiro[tetrahydropyran-3,3′-oxindole] Derivatives Employing Prins Cascade Strategy. Organic Letters, 2014, 16, 6267-6269.	4.6	45
8	InCl3-catalyzed Prins bicyclization for the synthesis of spirotetrahydropyran derivatives. RSC Advances, 2014, 4, 16739.	3.6	8
9	Acetal-initiated Prins bicyclization for the synthesis of hexahydrofuro-[3,4-c]furan lignans and octahydropyrano[3,4-c]pyran derivatives. Organic and Biomolecular Chemistry, 2014, 12, 4754-4762.	2.8	11
10	First example of quinine-squaramide catalyzed enantioselective addition of diphenyl phosphite to ketimines derived from isatins. Organic and Biomolecular Chemistry, 2014, 12, 1595.	2.8	68
11	Tandem Prins/pinacol reaction for the synthesis of oxaspiro[4.5]decan-1-one scaffolds. Organic and Biomolecular Chemistry, 2014, 12, 7257.	2.8	16
12	Prins Spirocyclization for the Synthesis of Spiro[isobenzofuranâ€pyran] Derivatives. European Journal of Organic Chemistry, 2014, 2014, 4234-4238.	2.4	14
13	Intramolecular C–O/C–S bond insertion of α-diazoesters for the synthesis of 2-aryl-4H-benzo[d][1,3]oxazine and 2-aryl-4H-benzo[d][1,3]thiazine derivatives. RSC Advances, 2014, 4, 44629-44633.	3.6	26
14	Prins Cascade Cyclization for the Synthesis of 1,9-Dioxa-4-azaspiro[5.5]undecane Derivatives. Journal of Organic Chemistry, 2014, 79, 2289-2295.	3.2	28
15	Tuning the Reactivity of Oxygen/Sulfur by Acidity of the Catalyst in Prins Cyclization: Oxa- versus Thia-Selectivity. Journal of Organic Chemistry, 2014, 79, 2716-2722.	3.2	26
16	Stereoselective Synthesis of Hexahydro-1 <i>H</i> -pyrano- and thiopyrano[3,4- <i>c</i>)quinoline Derivatives through a Prins Cascade Cyclization. Journal of Organic Chemistry, 2013, 78, 8161-8168.	3.2	26
17	The Prins Cascade Cyclization Reaction for the Synthesis of Angularlyâ€Fused Tetrahydropyran and Piperidine Derivatives. European Journal of Organic Chemistry, 2013, 2013, 1993-1999.	2.4	17
18	Cu(OTf) $<$ sub $>$ 2 $<$ /sub $>$ -Catalyzed Synthesis of 2,3-Disubstituted Indoles and 2,4,5-Trisubstituted Pyrroles from \hat{I} ±-Diazoketones. Organic Letters, 2013, 15, 464-467.	4.6	72

#	Article	IF	CITATIONS
19	Copper Salt of 12â€Tungstophosphoric Acid: An Efficient and Reusable Heteropoly Acid for the Click Chemistry. Chinese Journal of Chemistry, 2013, 31, 534-538.	4.9	6
20	Dual Behavior of Isatin-Based Cyclic Ketimines with Dicarbomethoxy Carbene: Expedient Synthesis of Highly Functionalized Spirooxindolyl Oxazolidines and Pyrrolines. Organic Letters, 2013, 15, 1512-1515.	4.6	54
21	Thia-Prins Bicyclization Approach for the Stereoselective Synthesis of Dithia- and Azathia-Bicycles. Journal of Organic Chemistry, 2013, 78, 6303-6308.	3.2	27
22	The stereoselective synthesis of cis-/trans-fused hexahydropyrano[4,3-b]chromenes via Prins cyclization trapping by a tethered nucleophile. Organic and Biomolecular Chemistry, 2012, 10, 6562.	2.8	29
23	Enantioselective Friedel–Crafts alkylation of indoles with 2-enoylpyridine-N-oxides catalyzed by glucoBOX-Cu(ii) complex. Organic and Biomolecular Chemistry, 2012, 10, 4731.	2.8	22
24	Oxidative Prins and Prins/Friedel–Crafts cyclizations for the stereoselective synthesis of dioxabicycles and hexahydro-1H-benzo[f]isochromenes via the benzylic C–H activation. Organic and Biomolecular Chemistry, 2012, 10, 1349-1358.	2.8	38
25	Unprecedented synergistic effects between weak Lewis and BrÃ,nsted acids in Prins cyclization. Chemical Communications, 2012, 48, 9316.	4.1	46
26	lodine-catalyzed condensation of isatin with indoles: A facile synthesis of di(indolyl)indolin-2-ones and evaluation of their cytotoxicity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2460-2463.	2.2	82
27	Tandem Prins/Friedel–Crafts Cyclization for Stereoselective Synthesis of Heterotricyclic Systems. Journal of Organic Chemistry, 2011, 76, 7677-7690.	3.2	69
28	lodine-catalyzed conjugate addition of indoles onto en-1,4-dione: A novel synthesis of 3-(1-(1H-indol-3-yl)-2-oxo-2-phenylethyl)indolin-2-ones as antibacterial and antifungal agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6510-6514.	2.2	22
29	Enantioselective Total Synthesis of (+)â€Vittatalactone. European Journal of Organic Chemistry, 2011, 2011, 4603-4608.	2.4	27
30	Samarium Triflate as Mild and Efficient Catalyst for Aza-Diels–Alder Reaction: A Facile Synthesis ofcis-Fused Pyrano- and Furanoquinolines. Synthetic Communications, 2010, 40, 1750-1757.	2.1	11
31	Indium(III) chloride catalyzed three-component coupling reaction: A novel synthesis of 2-substituted aryl(indolyl)kojic acid derivatives as potent antifungal and antibacterial agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7507-7511.	2.2	74
32	Efficient Method for Selective Introduction of Substituents as C(5) of Isoleucine and Other \hat{l}_{\pm} -Amino Acids. Organic Letters, 2006, 8, 2819-2821.	4.6	78
33	Novel Acetoxylation and Câ^'C Coupling Reactions at Unactivated Positions in α-Amino Acid Derivatives. Organic Letters, 2006, 8, 3391-3394.	4.6	516
34	New Synthetic Route for the Enantioselective Total Synthesis of Salinosporamide A and Biologically Active Analogues. Organic Letters, 2005, 7, 2699-2701.	4.6	105
35	Simple Enantiospecific Syntheses of the C(2)-Diastereomers of Omuralide and 3-Methylomuralide. Organic Letters, 2005, 7, 2703-2705.	4.6	11
36	MICROWAVE ASSISTED SYNTHESIS OF α,α′-BIS(BENZYLIDENE)KETONES IN DRY MEDIA*. Synthetic Communications, 2002, 32, 893-896.	2.1	41

#	Article	lF	CITATION
37	INDIUM TRICHLORIDE CATALYZED CHEMOSELECTIVE CONVERSION OF ALDEHYDES TOGEM-DIACETATES*. Synthetic Communications, 2002, 32, 1175-1180.	2.1	34
38	INDIUM TRICHLORIDE CATALYZED CHEMOSELECTIVE CONVERSION OF ALDEHYDES TO GEM-DIACETATES*. Synthetic Communications, 2002, 32, 2149-2153.	2.1	21
39	INDIUM TRICHLORIDE PROMOTED REGIOSELECTIVE RING OPENING OF AZIRIDINES WITH TMS AZIDE. Synthetic Communications, 2002, 32, 1797-1802.	2.1	20
40	MICROWAVE-ACCELERATED SYNTHESIS OF 4-CHLOROTETRAHYDROPYRANS BY BISMUTH(III) CHLORIDE*. Synthetic Communications, 2002, 32, 1803-1808.	2.1	14
41	INDIUM(III) CHLORIDE CATALYZED EFFICIENT CONVERSION OF CARBONYL COMPOUNDS TO 1,3-DITHIOACETALS. Synthetic Communications, 2002, 32, 715-719.	2.1	13
42	KF-Al2O3MEDIATED CROSS-CANNIZZARO REACTION UNDER MICROWAVE IRRADIATION*. Synthetic Communications, 2002, 32, 219-223.	2.1	21
43	INDIUM(III) CHLORIDE CATALYZED CONJUGATE ADDITION OF 1,3-DICARBONYL COMPOUNDS TO $\hat{1}\pm,\hat{1}^2$ -UNSATURATED KETONES*. Synthetic Communications, 2002, 32, 3519-3524.	2.1	16
44	A MILD AND EFFICIENT CLEAVAGE OFgem-DIACETATES TO ALDEHYDES BY CBr4*. Synthetic Communications, 2001, 31, 1091-1095.	2.1	25
45	InCl3-SiO2 Catalyzed Electrophilic Amination of Arenes: A Facile and Rapid Synthesis of Aryl Hydrazides. Synlett, 2001, 2001, 1781-1783.	1.8	44
46	BISMUTH(III) CHLORIDE CATALYZED AZA-DIELS-ALDER REACTION*. Synthetic Communications, 2001, 31, 1075-1080.	2.1	15
47	SILICA GEL CATALYZED PREPARATION OF CINNAMIC ACIDS UNDER MICROWAVE IRRADIATION. Organic Preparations and Procedures International, 2000, 32, 81-83.	1.3	13
48	Efficient One-Pot Preparation of Nitriles from Aldehydes using N-Methyl-pyrrolidone. Synthesis, 1999, 1999, 586-587.	2.3	43
49	Iodine-Catalyzed Mild and Efficient Tetrahydropyranylation / Depyranylation of Alcohols. Chemistry	1.3	62