Nikolay Dimitrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10945874/publications.pdf Version: 2024-02-01

NIKOLAY DIMITROV

#	Article	IF	CITATIONS
1	From wind to loads: wind turbine site-specific load estimation with surrogate models trained on high-fidelity load databases. Wind Energy Science, 2018, 3, 767-790.	3.3	66
2	Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates. Renewable Energy, 2018, 119, 910-922.	8.9	61
3	Model of wind shear conditional on turbulence and its impact on wind turbine loads. Wind Energy, 2015, 18, 1917-1931.	4.2	48
4	Effects of normal and extreme turbulence spectral parameters on wind turbine loads. Renewable Energy, 2017, 101, 1180-1193.	8.9	41
5	Turbulence characterization from a forward-looking nacelle lidar. Wind Energy Science, 2017, 2, 133-152.	3.3	34
6	A benchmarking exercise for environmental contours. Ocean Engineering, 2021, 236, 109504.	4.3	26
7	Application of simulated lidar scanning patterns to constrained Gaussian turbulence fields for load validation. Wind Energy, 2017, 20, 79-95.	4.2	23
8	Surrogate models for parameterized representation of wakeâ€induced loads in wind farms. Wind Energy, 2019, 22, 1371-1389.	4.2	22
9	Extreme wind fluctuations: joint statistics, extreme turbulence, and impact on wind turbine loads. Wind Energy Science, 2019, 4, 325-342.	3.3	22
10	Wind turbine load validation using lidarâ€based wind retrievals. Wind Energy, 2019, 22, 1512-1533.	4.2	19
11	Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1. Journal of Physics: Conference Series, 2016, 753, 032010.	0.4	17
12	Impact of turbulence induced loads and wave kinematic models on fatigue reliability estimates of offshore wind turbine monopiles. Ocean Engineering, 2018, 155, 295-309.	4.3	15
13	Wind turbine load validation in wakes using wind field reconstruction techniques and nacelle lidar wind retrievals. Wind Energy Science, 2021, 6, 841-866.	3.3	15
14	Reliability Analysis of a Composite Wind Turbine Blade Section Using the Model Correction Factor Method: Numerical Study and Validation. Applied Composite Materials, 2013, 20, 17-39.	2.5	14
15	Wind farm layout optimization with load constraints using surrogate modelling. Journal of Physics: Conference Series, 2020, 1618, 042035.	0.4	13
16	Aeroelastic load validation in wake conditions using nacelle-mounted lidar measurements. Wind Energy Science, 2020, 5, 1129-1154.	3.3	13
17	Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics. Wind Energy Science, 2021, 6, 1117-1142.	3.3	9
18	Virtual sensors for wind turbines with machine learningâ€based time series models. Wind Energy, 2022, 25, 1626-1645.	4.2	8

NIKOLAY DIMITROV

#	Article	IF	CITATIONS
19	Inverse Directional Simulation: an environmental contour method providing an exact return period. Journal of Physics: Conference Series, 2020, 1618, 062048.	0.4	7
20	From SCADA to lifetime assessment and performance optimization: how to use models and machine learning to extract useful insights from limited data. Journal of Physics: Conference Series, 2019, 1222, 012032.	0.4	5
21	Wind turbine wake characterization using the SpinnerLidar measurements. Journal of Physics: Conference Series, 2020, 1618, 062040.	0.4	4
22	Validation of the dynamic wake meandering model with respect to loads and power production. Wind Energy Science, 2021, 6, 441-460.	3.3	3
23	Wind farm set point optimization with surrogate models for load and power output targets. Journal of Physics: Conference Series, 2021, 2018, 012013.	0.4	2
24	Modelling of turbine power and local wind conditions in wind farm using an autoencoder neural network. Journal of Physics: Conference Series, 2022, 2265, 032069.	0.4	0