
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple Factors Modulate Biofilm Formation by the Anaerobic Pathogen Clostridium difficile. Journal of Bacteriology, 2013, 195, 545-555.	2.2	247
2	Gold nanoparticles as carriers for a synthetic <i>Streptococcus pneumoniae</i> type 14 conjugate vaccine. Nanomedicine, 2012, 7, 651-662.	3.3	158
3	Synthetically defined glycoprotein vaccines: current status and future directions. Chemical Science, 2013, 4, 2995.	7.4	134
4	Towards the next generation of biomedicines by site-selective conjugation. Chemical Society Reviews, 2016, 45, 1691-1719.	38.1	134
5	Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiology Reviews, 2018, 42, 388-423.	8.6	126
6	Recent Mechanistic Insights on Glycoconjugate Vaccines and Future Perspectives. ACS Chemical Biology, 2013, 8, 1653-1663.	3.4	109
7	Synthesis of a well-defined glycoconjugate vaccine by a tyrosine-selective conjugation strategy. Chemical Science, 2013, 4, 3827.	7.4	101
8	Photogenerated glycan arrays identify immunogenic sugar moieties ofBacillus anthracis exosporium. Proteomics, 2007, 7, 180-184.	2.2	98
9	Identification of the Smallest Structure Capable of Evoking Opsonophagocytic Antibodies against <i>Streptococcus pneumoniae</i> Type 14. Infection and Immunity, 2008, 76, 4615-4623.	2.2	95
10	Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Review of Vaccines, 2019, 18, 881-895.	4.4	89
11	Antimicrobial glycoconjugate vaccines: an overview of classic and modern approaches for protein modification. Chemical Society Reviews, 2018, 47, 9015-9025.	38.1	83
12	Protein Carriers for Glycoconjugate Vaccines: History, Selection Criteria, Characterization and New Trends. Molecules, 2018, 23, 1451.	3.8	81
13	Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine, 2010, 29, 104-114.	3.8	74
14	Phosphorylation of the Synthetic Hexasaccharide Repeating Unit Is Essential for the Induction of Antibodies to <i>Clostridium difficile</i> PSII Cell Wall Polysaccharide. ACS Chemical Biology, 2012, 7, 1420-1428.	3.4	73
15	Mannosylation of LNP Results in Improved Potency for Self-Amplifying RNA (SAM) Vaccines. ACS Infectious Diseases, 2019, 5, 1546-1558.	3.8	70
16	Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Molecular Pharmaceutics, 2021, 18, 2867-2888.	4.6	65
17	Vaccines against <i>Clostridium difficile</i> . Human Vaccines and Immunotherapeutics, 2014, 10, 1466-1477.	3.3	64
18	Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chemical Reviews, 2022, 122, 15672-15716.	47.7	63

2

#	Article	IF	CITATIONS
19	Sugar–Protein Connectivity Impacts on the Immunogenicity of Siteâ€Selective <i>Salmonella</i> Oâ€Antigen Glycoconjugate Vaccines. Angewandte Chemie - International Edition, 2015, 54, 13198-13203.	13.8	62
20	GMMA Is a Versatile Platform to Design Effective Multivalent Combination Vaccines. Vaccines, 2020, 8, 540.	4.4	56
21	Deciphering the structure–immunogenicity relationship of anti- <i>Candida</i> glycoconjugate vaccines. Chemical Science, 2014, 5, 4302-4311.	7.4	55
22	Structure of a protective epitope of group B <i>Streptococcus</i> type III capsular polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5017-5022.	7.1	55
23	Defined Conjugation of Glycans to the Lysines of CRM ₁₉₇ Guided by their Reactivity Mapping. ChemBioChem, 2014, 15, 836-843.	2.6	54
24	Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19077-19082.	7.1	52
25	Synthesis of Laminarin Fragments and Evaluation of a β-(1,3) Glucan Hexasaccaride-CRM ₁₉₇ Conjugate as Vaccine Candidate against <i>Candida albicans</i> . Journal of Carbohydrate Chemistry, 2011, 30, 249-280.	1.1	50
26	Advancing Homogeneous Antimicrobial Glycoconjugate Vaccines. Accounts of Chemical Research, 2017, 50, 1270-1279.	15.6	50
27	Anti-Group B <i>Streptococcus</i> Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation. ACS Chemical Biology, 2015, 10, 1737-1746.	3.4	46
28	Synthesis of the β anomer of the spacer-equipped tetrasaccharide side chain of the major glycoprotein of the Bacillus anthracis exosporium. Carbohydrate Research, 2005, 340, 2579-2582.	2.3	45
29	Preparation, characterization and immunogenicity of HIV-1 related high-mannose oligosaccharides-CRM197 glycoconjugates. Glycoconjugate Journal, 2010, 27, 501-513.	2.7	45
30	Tyrosine-Directed Conjugation of Large Glycans to Proteins via Copper-Free Click Chemistry. Bioconjugate Chemistry, 2014, 25, 2105-2111.	3.6	44
31	Studies toward a conjugate vaccine for anthrax. Synthesis and characterization of anthrose [4,6-dideoxy-4-(3-hydroxy-3-methylbutanamido)-2-O-methyl-d-glucopyranose] and its methyl glycosides. Carbohydrate Research, 2005, 340, 1591-1600.	2.3	40
32	Synthesis of the tetrasaccharide side chain of the major glycoprotein of the Bacillus anthracis exosporium. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 615-617.	2.2	40
33	Exploring the Effect of Conjugation Site and Chemistry on the Immunogenicity of an anti-Group B <>Streptococcus Glycoconjugate Vaccine Based on GBS67 Pilus Protein and Type V Polysaccharide. Bioconjugate Chemistry, 2015, 26, 1839-1849.	3.6	39
34	Oxetane Grafts Installed Siteâ€5electively on Native Disulfides to Enhance Protein Stability and Activity Inâ€Vivo. Angewandte Chemie - International Edition, 2017, 56, 14963-14967.	13.8	39
35	Immunogens related to the synthetic tetrasaccharide side chain of the Bacillus anthracis exosporium. Bioorganic and Medicinal Chemistry, 2007, 15, 4283-4310.	3.0	38
36	Molecular Cloning and Functional Characterization of Components of the Capsule Biosynthesis Complex of Neisseria meningitidis Serogroup A. Journal of Biological Chemistry, 2014, 289, 19395-19407.	3.4	38

#	Article	IF	CITATIONS
37	First Synthesis of <i>C. difficile</i> PS-II Cell Wall Polysaccharide Repeating Unit. Organic Letters, 2011, 13, 378-381.	4.6	37
38	Design of a novel vaccine nanotechnology-based delivery system comprising CpGODN-protein conjugate anchored to liposomes. Journal of Controlled Release, 2020, 323, 125-137.	9.9	36
39	Immunoactivity of Protein Conjugates of Carba Analogues fromNeisseria meningitidisA Capsular Polysaccharide. ACS Chemical Biology, 2013, 8, 2561-2567.	3.4	35
40	Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic β-Glucan Dectin-1 Agonist to Protein Antigen. Molecular Pharmaceutics, 2015, 12, 1662-1672.	4.6	35
41	Synthesis of Staphylococcus aureus type 5 capsular polysaccharide repeating unit using novel l-FucNAc and d-FucNAc synthons and immunochemical evaluation. Bioorganic and Medicinal Chemistry, 2012, 20, 6403-6415.	3.0	34
42	Studies towards a Conjugate Vaccine for Anthrax: Synthesis of the Tetrasaccharide Side Chain of theBacillus anthracis Exosporium. Helvetica Chimica Acta, 2006, 89, 1075-1089.	1.6	31
43	Synthesis and immunological evaluation of protein conjugates of <i>Neisseria meningitidis</i> X capsular polysaccharide fragments. Beilstein Journal of Organic Chemistry, 2014, 10, 2367-2376.	2.2	31
44	Combined Chemical Synthesis and Tailored Enzymatic Elongation Provide Fully Synthetic and Conjugation-Ready <i>Neisseria meningitidis</i> Serogroup X Vaccine Antigens. ACS Chemical Biology, 2018, 13, 984-994.	3.4	31
45	Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides, and a glycopeptide adjuvant. Glycoconjugate Journal, 2010, 27, 69-77.	2.7	28
46	Recombinant Clostridium difficile Toxin Fragments as Carrier Protein for PSII Surface Polysaccharide Preserve Their Neutralizing Activity. Toxins, 2014, 6, 1385-1396.	3.4	24
47	Gold nanoparticles morphology does not affect the multivalent presentation and antibody recognition of Group A Streptococcus synthetic oligorhamnans. Bioorganic Chemistry, 2020, 99, 103815.	4.1	24
48	Conjugation of Mannans to Enhance the Potency of Liposome Nanoparticles for the Delivery of RNA Vaccines. Pharmaceutics, 2021, 13, 240.	4.5	24
49	A Synthetic Disaccharide Analogue from <i>Neisseria meningitidis</i> A Capsular Polysaccharide Stimulates Immune Cell Responses and Induces Immunoglobulin G (IgG) Production in Mice When Protein-Conjugated. ACS Infectious Diseases, 2015, 1, 487-496.	3.8	21
50	The adjuvant effect of TLR7 agonist conjugated to a meningococcal serogroup C glycoconjugate vaccine. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 110-119.	4.3	20
51	An efficient cell free enzyme-based total synthesis of a meningococcal vaccine candidate. Npj Vaccines, 2016, 1, 16017.	6.0	20
52	A new method for the synthesis of carba-sugar enones (gabosines) using a mercury(II)-mediated opening of 4,5-cyclopropanated pyranosides as the key-step. Tetrahedron Letters, 2006, 47, 6591-6594.	1.4	19
53	The Conformation of the Mannopyranosyl Phosphate Repeating Unit of the Capsular Polysaccharide of <i>Neisseria meningitidis</i> Serogroup A and Its Carbaâ€Mimetic. European Journal of Organic Chemistry, 2018, 2018, 4548-4555.	2.4	19
54	Structure of a protective epitope reveals the importance of acetylation of <i>Neisseria meningitidis</i> serogroup A capsular polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29795-29802.	7.1	19

#	Article	IF	CITATIONS
55	A stabilized glycomimetic conjugate vaccine inducing protective antibodies against Neisseria meningitidis serogroup A. Nature Communications, 2020, 11, 4434.	12.8	18
56	Orthogonal cleavage of the 2-naphthylmethyl group in the presence of the p-methoxy phenyl-protected anomeric position and its use in carbohydrate synthesis. Organic Chemistry Frontiers, 2016, 3, 753-758.	4.5	17
57	Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. , 2022, 235, 108158.		17
58	Investigating the immunodominance of carbohydrate antigens in a bivalent unimolecular glycoconjugate vaccine against serogroup A and C meningococcal disease. Glycoconjugate Journal, 2014, 31, 637-647.	2.7	16
59	Synthesis of <i>Group B Streptococcus</i> type III polysaccharide fragments for evaluation of their interactions with monoclonal antibodies. Pure and Applied Chemistry, 2017, 89, 855-875.	1.9	16
60	New Strategies for the Synthesis of Bio-medically Relevant Oligosaccharides: Recent Updates on 1,2-cis-O-Glycosylation and α-O-Sialylation. Current Organic Synthesis, 2013, 10, 501-524.	1.3	16
61	Regioselective Glycosylation Strategies for the Synthesis of Group Ia and Ib Streptococcus Related Glycans Enable Elucidating Unique Conformations of the Capsular Polysaccharides. Chemistry - A European Journal, 2019, 25, 16277-16287.	3.3	15
62	Glycosylation under Thermodynamic Control: Synthesis of the Di- and the Hexasaccharide Fragments of the O-SP ofVibrio Cholerae O:1 Serotype Ogawa from Fully Functionalized Building Blocks. European Journal of Organic Chemistry, 2007, 2007, 988-1000.	2.4	14
63	Fighting Antibiotic-Resistant Klebsiella pneumoniae with "Sweet―Immune Targets. MBio, 2018, 9, .	4.1	14
64	Carbohydrate based meningococcal vaccines: past and present overview. Glycoconjugate Journal, 2021, 38, 401-409.	2.7	14
65	Structureâ€Guided Design of a Groupâ€B Streptococcus Typeâ€III Synthetic Glycan–Conjugate Vaccine. Chemistry - A European Journal, 2020, 26, 7018-7025.	3.3	13
66	Steric course of some cyclopropanation reactions of L-threo-hex-4-enopyranosides. Tetrahedron, 2004, 60, 3787-3795.	1.9	12
67	GBS type III oligosaccharides containing a minimal protective epitope can be turned into effective vaccines by multivalent presentation. Journal of Infectious Diseases, 2020, 221, 943-947.	4.0	12
68	Generalized Modules for Membrane Antigens as Carrier for Polysaccharides: Impact of Sugar Length, Density, and Attachment Site on the Immune Response Elicited in Animal Models. Frontiers in Immunology, 2021, 12, 719315.	4.8	12
69	Oxetane Grafts Installed Siteâ€Selectively on Native Disulfides to Enhance Protein Stability and Activity Inâ€Vivo. Angewandte Chemie, 2017, 129, 15159-15163.	2.0	10
70	Chemical Synthesis and Immunological Evaluation of Fragments of the Multiantennary Group-Specific Polysaccharide of Group B <i>Streptococcus</i> . Jacs Au, 2022, 2, 1724-1735.	7.9	10
71	Formation of Ethyl 1-Thiomannopyranosides from 2-O-Chloroacetylated and 2-O-Levulinoylated Synthons. European Journal of Organic Chemistry, 2006, 2006, 2803-2809.	2.4	9
72	Automated glycan assembly of <i>Streptococcus pneumoniae</i> type 14 capsular polysaccharide fragments. RSC Advances, 2020, 10, 23668-23674.	3.6	9

#	Article	IF	CITATIONS
73	Glycan surface antigens from <i>Bacillus anthracis</i> as vaccine targets: current status and future perspectives. Expert Review of Vaccines, 2014, 13, 895-907.	4.4	7
74	Optimizing adjuvants for intradermal delivery of MenC glycoconjugate vaccine. Vaccine, 2017, 35, 3930-3937.	3.8	7
75	Structure-Immunogenicity Relationship of α- and β-Tetrasaccharide Glycoforms from Bacillus anthracis Exosporium and Fragments Thereof. Molecules, 2018, 23, 2079.	3.8	7
76	Retaining the structural integrity of disulfide bonds in diphtheria toxoid carrier protein is crucial for the effectiveness of glycoconjugate vaccine candidates. Chemical Science, 2022, 13, 2440-2449.	7.4	7
77	Synthesis of protein conjugates adsorbed on cationic liposomes surface. MethodsX, 2020, 7, 100942.	1.6	6
78	Glycoconjugate vaccines: classic and novel approaches. Glycoconjugate Journal, 2021, 38, 397-398.	2.7	5
79	Structure-based glycoconjugate vaccine design: The example of Group B Streptococcus type III capsular polysaccharide. Drug Discovery Today: Technologies, 2020, 35-36, 23-33.	4.0	5
80	Elucidating the Structural and Minimal Protective Epitope of the Serogroup X Meningococcal Capsular Polysaccharide. Frontiers in Molecular Biosciences, 2021, 8, 745360.	3.5	5
81	Development of Opsonic Mouse Monoclonal Antibodies against Multidrug-Resistant Enterococci. Infection and Immunity, 2019, 87, .	2.2	4
82	Epitope Recognition of a Monoclonal Antibody Raised against a Synthetic Glycerol Phosphate Based Teichoic Acid. ACS Chemical Biology, 2021, 16, 1344-1349.	3.4	4
83	Efficient Synthesis of Meningococcal X Polysaccharide Repeating Unit (N-Acetylglucosamine-4-phosphate) as Analytical Standard for Polysaccharide Determination. Synthetic Communications, 2014, 44, 1266-1273.	2.1	3
84	Structureâ€Guided Design of a Groupâ€B Streptococcus Typeâ€III Synthetic Glycan–Conjugate Vaccine. Chemistry - A European Journal, 2020, 26, 6944-6944.	3.3	3
85	Broadening the concept of glycoconjugates: glycoRNA and ubiquitinylated lipopolysaccharide. Glycoconjugate Journal, 2021, 38, 609-610.	2.7	1
86	Vaccinology Gets Help from Chemistry. Cell Chemical Biology, 2016, 23, 1047-1048.	5.2	0