
Menghang Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1093994/publications.pdf Version: 2024-02-01

MENCHANC XIA

#	Article	IF	CITATIONS
1	Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 2016, 22, 1101-1107.	15.2	581
2	High-throughput screening assays for the identification of chemical probes. Nature Chemical Biology, 2007, 3, 466-479.	3.9	555
3	Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chemical Biology, 2016, 11, 3214-3225.	1.6	364
4	The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. Drug Discovery Today, 2010, 15, 997-1007.	3.2	255
5	Integrated Model of Chemical Perturbations of a Biological Pathway Using 18 <i>In Vitro</i> High-Throughput Screening Assays for the Estrogen Receptor. Toxicological Sciences, 2015, 148, 137-154.	1.4	251
6	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis, 2015, 36, S254-S296.	1.3	239
7	The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discovery Today, 2013, 18, 716-723.	3.2	235
8	Compound Cytotoxicity Profiling Using Quantitative High-Throughput Screening. Environmental Health Perspectives, 2008, 116, 284-291.	2.8	232
9	5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nature Structural and Molecular Biology, 2012, 19, 1037-1043.	3.6	221
10	Identification of known drugs that act as inhibitors of NF-κB signaling and their mechanism of action. Biochemical Pharmacology, 2010, 79, 1272-1280.	2.0	214
11	Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nature Communications, 2016, 7, 10425.	5.8	202
12	Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors. Environmental Health Perspectives, 2011, 119, 1142-1148.	2.8	189
13	Editor's Highlight: Analysis of the Effects of Cell Stress and Cytotoxicity on <i>In Vitro</i> Assay Activity Across a Diverse Chemical and Assay Space. Toxicological Sciences, 2016, 152, 323-339.	1.4	171
14	Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Scientific Reports, 2014, 4, 5664.	1.6	167
15	Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicology in Vitro, 2013, 27, 1320-1346.	1.1	165
16	Development and Validation of a Computational Model for Androgen Receptor Activity. Chemical Research in Toxicology, 2017, 30, 946-964.	1.7	163
17	Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Research, 2016, 44, 8610-8620.	6.5	155
18	Bisphenol A affects androgen receptor function via multiple mechanisms. Chemico-Biological Interactions, 2013, 203, 556-564.	1.7	154

#	Article	IF	CITATIONS
19	Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential. Environmental Health Perspectives, 2015, 123, 49-56.	2.8	154
20	Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Research, 2017, 27, 1046-1064.	5.7	153
21	Mitochondrial Membrane Potential Assay. Methods in Molecular Biology, 2016, 1473, 17-22.	0.4	150
22	Using <i>in Vitro</i> High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals. Environmental Health Perspectives, 2013, 121, 7-14.	2.8	134
23	Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery, 2018, 4, 31.	3.1	128
24	Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 51-66.	0.9	118
25	Human Cell Toxicogenomic Analysis Linking Reactive Oxygen Species to the Toxicity of Monohaloacetic Acid Drinking Water Disinfection Byproducts. Environmental Science & Technology, 2013, 47, 12514-12523.	4.6	108
26	Tox21Challenge to Build Predictive Models of Nuclear Receptor and Stress Response Pathways as Mediated by Exposure to Environmental Chemicals and Drugs. Frontiers in Environmental Science, 2016, 3, .	1.5	106
27	Cardiac Glycosides Inhibit p53 Synthesis by a Mechanism Relieved by Src or MAPK Inhibition. Cancer Research, 2009, 69, 6556-6564.	0.4	105
28	High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5423-5428.	3.3	104
29	Identification of Clinically Used Drugs That Activate Pregnane X Receptors. Drug Metabolism and Disposition, 2011, 39, 151-159.	1.7	91
30	Population-Based <i>in Vitro</i> Hazard and Concentration–Response Assessment of Chemicals: The 1000 Genomes High-Throughput Screening Study. Environmental Health Perspectives, 2015, 123, 458-466.	2.8	89
31	Prediction of human population responses to toxic compounds by a collaborative competition. Nature Biotechnology, 2015, 33, 933-940.	9.4	88
32	A bioluminescent cytotoxicity assay for assessment of membrane integrity using a proteolytic biomarker. Toxicology in Vitro, 2008, 22, 1099-1106.	1.1	86
33	Paradigm Shift in Toxicity Testing and Modeling. AAPS Journal, 2012, 14, 473-480.	2.2	79
34	Application of a homogenous membrane potential assay to assess mitochondrial function. Physiological Genomics, 2012, 44, 495-503.	1.0	77
35	A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays. Journal of Biomolecular Screening, 2015, 20, 887-897.	2.6	75
36	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	2.8	74

#	Article	IF	CITATIONS
37	Systematic Study of Mitochondrial Toxicity of Environmental Chemicals Using Quantitative High Throughput Screening. Chemical Research in Toxicology, 2013, 26, 1323-1332.	1.7	72
38	Predictive Endocrine Testing in the 21st Century Using <i>in Vitro</i> Assays of Estrogen Receptor Signaling Responses. Environmental Science & Technology, 2014, 48, 8706-8716.	4.6	71
39	Characterization of Diversity in Toxicity Mechanism Using in Vitro Cytotoxicity Assays in Quantitative High Throughput Screening. Chemical Research in Toxicology, 2008, 21, 659-667.	1.7	70
40	A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Analytical Biochemistry, 2009, 394, 30-38.	1.1	62
41	Cell-Based High-Throughput Screening for Aromatase Inhibitors in the Tox21 10K Library. Toxicological Sciences, 2015, 147, 446-457.	1.4	61
42	Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Research, 2018, 150, 217-225.	1.9	61
43	Comprehensive Analyses and Prioritization of Tox21 10K Chemicals Affecting Mitochondrial Function by in-Depth Mechanistic Studies. Environmental Health Perspectives, 2018, 126, 077010.	2.8	60
44	Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data. Environmental Health Perspectives, 2016, 124, 634-641.	2.8	56
45	Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library. Environmental Health Perspectives, 2019, 127, 97009.	2.8	56
46	Identification of Chemical Compounds that Induce HIF-1α Activity. Toxicological Sciences, 2009, 112, 153-163.	1.4	55
47	Alternative approaches for identifying acute systemic toxicity: Moving from research to regulatory testing. Toxicology in Vitro, 2017, 41, 245-259.	1.1	54
48	Review of high-content screening applications in toxicology. Archives of Toxicology, 2019, 93, 3387-3396.	1.9	54
49	Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2412-2417.	3.3	52
50	Diversity-Oriented Synthesis Yields a Novel Lead for the Treatment of Malaria. ACS Medicinal Chemistry Letters, 2012, 3, 112-117.	1.3	52
51	Quantitative High-Throughput Profiling of Environmental Chemicals and Drugs that Modulate Farnesoid X Receptor. Scientific Reports, 2014, 4, 6437.	1.6	51
52	A cell-based quantitative high-throughput image screening identified novel autophagy modulators. Pharmacological Research, 2016, 110, 35-49.	3.1	49
53	Characterization of three human cell line models for highâ€throughput neuronal cytotoxicity screening. Journal of Applied Toxicology, 2017, 37, 167-180.	1.4	49
54	Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repairâ€deficient chicken DT40 cell lines. Environmental and Molecular Mutagenesis, 2011, 52, 547-561.	0.9	47

#	Article	IF	CITATIONS
55	Quantitative High-Throughput Screening for Chemical Toxicity in a Population-Based In Vitro Model. Toxicological Sciences, 2012, 126, 578-588.	1.4	47
56	Detection of Phospholipidosis Induction: A Cell-Based Assay in High-Throughput and High-Content Format. Journal of Biomolecular Screening, 2014, 19, 66-76.	2.6	45
57	Exploration and optimization of substituted triazolothiadiazines and triazolopyridazines as PDE4 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3686-3692.	1.0	44
58	Profiling Environmental Chemicals for Activity in the Antioxidant Response Element Signaling Pathway Using a High Throughput Screening Approach. Environmental Health Perspectives, 2012, 120, 1150-1156.	2.8	42
59	Identification of Novel Activators of Constitutive Androstane Receptor from FDA-Approved Drugs by Integrated Computational and Biological Approaches. Pharmaceutical Research, 2013, 30, 489-501.	1.7	42
60	Identification of Modulators That Activate the Constitutive Androstane Receptor From the Tox21 10K Compound Library. Toxicological Sciences, 2019, 167, 282-292.	1.4	42
61	The role of tumour necrosis factor-Â and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis, 2012, 27, 77-86.	1.0	41
62	Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis, 2015, 36, S184-S202.	1.3	41
63	Are hERG channel blockers also phospholipidosis inducers?. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4587-4590.	1.0	40
64	ldentification of Estrogen-Related Receptor α Agonists in the Tox21 Compound Library. Endocrinology, 2018, 159, 744-753.	1.4	40
65	State-dependent inhibition of L-type calcium channels: cell-based assay in high-throughput format. Analytical Biochemistry, 2004, 327, 74-81.	1.1	39
66	Expanding biological space coverage enhances the prediction of drug adverse effects in human using in vitro activity profiles. Scientific Reports, 2018, 8, 3783.	1.6	39
67	<i>Assay Guidance Manual</i> : Quantitative Biology and Pharmacology in Preclinical Drug Discovery. Clinical and Translational Science, 2018, 11, 461-470.	1.5	38
68	Biological activity-based modeling identifies antiviral leads against SARS-CoV-2. Nature Biotechnology, 2021, 39, 747-753.	9.4	38
69	Development and Application of Human Renal Proximal Tubule Epithelial Cells for Assessment of Compound Toxicity. Current Chemical Genomics and Translational Medicine, 2017, 11, 19-30.	4.3	38
70	Editorial: Tox21 Challenge to Build Predictive Models of Nuclear Receptor and Stress Response Pathways As Mediated by Exposure to Environmental Toxicants and Drugs. Frontiers in Environmental Science, 2017, 5, .	1.5	36
71	Prediction of hERG Liability – Using SVM Classification, Bootstrapping and Jackknifing. Molecular Informatics, 2017, 36, 1600126.	1.4	35
72	ldentification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicology and Applied Pharmacology, 2011, 252, 250-258.	1.3	34

#	Article	IF	CITATIONS
73	Quantitative High-Throughput Identification of Drugs as Modulators of Human Constitutive Androstane Receptor. Scientific Reports, 2015, 5, 10405.	1.6	34
74	Weighted Feature Significance: A Simple, Interpretable Model of Compound Toxicity Based on the Statistical Enrichment of Structural Features. Toxicological Sciences, 2009, 112, 385-393.	1.4	33
75	Identification of repurposed small molecule drugs for chordoma therapy. Cancer Biology and Therapy, 2013, 14, 638-647.	1.5	32
76	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	5.3	32
77	High-Throughput Phenotypic Screening of Human Astrocytes to Identify Compounds That Protect Against Oxidative Stress. Stem Cells Translational Medicine, 2016, 5, 613-627.	1.6	31
78	The Pilot Phase of the NIH Chemical Genomics Center. Current Topics in Medicinal Chemistry, 2009, 9, 1181-1193.	1.0	28
79	Structure Based Model for the Prediction of Phospholipidosis Induction Potential of Small Molecules. Journal of Chemical Information and Modeling, 2012, 52, 1798-1805.	2.5	28
80	Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity. Journal of Environmental Sciences, 2017, 58, 224-230.	3.2	28
81	Pyrazole-4-Carboxamide (YW2065): A Therapeutic Candidate for Colorectal Cancer via Dual Activities of Wnt/β-Catenin Signaling Inhibition and AMP-Activated Protein Kinase (AMPK) Activation. Journal of Medicinal Chemistry, 2019, 62, 11151-11164.	2.9	28
82	High-Throughput Screening to Predict Chemical-Assay Interference. Scientific Reports, 2020, 10, 3986.	1.6	28
83	AroER Tri-Screen Is a Biologically Relevant Assay for Endocrine Disrupting Chemicals Modulating the Activity of Aromatase and/or the Estrogen Receptor. Toxicological Sciences, 2014, 139, 198-209.	1.4	27
84	Assessment of the DNA damaging potential of environmental chemicals using a quantitative highâ€ŧhroughput screening approach to measure p53 activation. Environmental and Molecular Mutagenesis, 2017, 58, 494-507.	0.9	27
85	Identifying Compounds with Genotoxicity Potential Using Tox21 High-Throughput Screening Assays. Chemical Research in Toxicology, 2019, 32, 1384-1401.	1.7	27
86	Identification of small molecule compounds that inhibit the HIF-1 signaling pathway. Molecular Cancer, 2009, 8, 117.	7.9	26
87	Identification of HDAC Inhibitors Using a Cell-Based HDAC I/II Assay. Journal of Biomolecular Screening, 2016, 21, 643-652.	2.6	26
88	Methylene blue is a potent and broad-spectrum inhibitor against Zika virus <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2020, 9, 2404-2416.	3.0	26
89	Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential. Frontiers in Bioengineering and Biotechnology, 2020, 8, 109.	2.0	26
90	Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform. Mutagenesis, 2016, 31, gev055.	1.0	25

#	Article	IF	CITATIONS
91	Systems modeling of developmental vascular toxicity. Current Opinion in Toxicology, 2019, 15, 55-63.	2.6	25
92	Mining of high throughput screening database reveals AP-1 and autophagy pathways as potential targets for COVID-19 therapeutics. Scientific Reports, 2021, 11, 6725.	1.6	25
93	Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology, 2017, 385, 48-58.	2.0	24
94	Application of In Vitro Metabolism Activation in High-Throughput Screening. International Journal of Molecular Sciences, 2020, 21, 8182.	1.8	24
95	A Universal and High-Throughput Proteomics Sample Preparation Platform. Analytical Chemistry, 2021, 93, 8423-8431.	3.2	24
96	Identification of Compounds for Butyrylcholinesterase Inhibition. SLAS Discovery, 2021, 26, 1355-1364.	1.4	24
97	Predictive Models for Human Organ Toxicity Based on <i>In Vitro</i> Bioactivity Data and Chemical Structure. Chemical Research in Toxicology, 2020, 33, 731-741.	1.7	23
98	A Novel Chordoma Xenograft Allows In Vivo Drug Testing and Reveals the Importance of NF-κB Signaling in Chordoma Biology. PLoS ONE, 2013, 8, e79950.	1.1	23
99	Two High Throughput Screen Assays for Measurement of TNF-α in THP-1 Cells. Current Chemical Genomics, 2011, 5, 21-29.	2.0	23
100	Assessment of Compound Hepatotoxicity Using Human Plateable Cryopreserved Hepatocytes in a 1536-Well-Plate Format. Assay and Drug Development Technologies, 2012, 10, 78-87.	0.6	22
101	Why are most phospholipidosis inducers also hERG blockers?. Archives of Toxicology, 2017, 91, 3885-3895.	1.9	22
102	Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug‣ike Molecules. Molecular Informatics, 2012, 31, 783-792.	1.4	21
103	Identification of novel PARP inhibitors using a cell-based TDP1 inhibitory assay in a quantitative high-throughput screening platform. DNA Repair, 2014, 21, 177-182.	1.3	21
104	A Novel Chemotherapeutic Agent to Treat Tumors with DNA Mismatch Repair Deficiencies. Cancer Research, 2016, 76, 4183-4191.	0.4	21
105	Profiling the Tox21 Chemical Collection for Acetylcholinesterase Inhibition. Environmental Health Perspectives, 2021, 129, 47008.	2.8	21
106	Identification of approved and investigational drugs that inhibit hypoxia-inducible factor-1 signaling. Oncotarget, 2016, 7, 8172-8183.	0.8	21
107	Identification of Thyroid Hormone Receptor Active Compounds Using a Quantitative High-Throughput Screening Platform. Current Chemical Genomics and Translational Medicine, 2014, 8, 36-46.	4.3	21
108	Development of Novel Cell Lines for High-Throughput Screening to Detect Estrogen-Related Receptor Alpha Modulators. SLAS Discovery, 2017, 22, 720-731.	1.4	20

#	Article	IF	CITATIONS
109	Inhibition of Morphine-Induced cAMP Overshoot: A Cell-Based Assay Model in a High-Throughput Format. Cellular and Molecular Neurobiology, 2011, 31, 901-907.	1.7	19
110	Drug repurposing screen identifies lestaurtinib amplifies the ability of the poly (ADP-ribose) polymerase 1 inhibitor AG14361 to kill breast cancer associated gene-1 mutant and wild type breast cancer cells. Breast Cancer Research, 2014, 16, R67.	2.2	19
111	Evaluation of CYP3A4 inhibition and hepatotoxicity using DMSO-treated human hepatoma HuH-7 cells. Cell Biology and Toxicology, 2015, 31, 221-230.	2.4	19
112	Use of high-throughput enzyme-based assay with xenobiotic metabolic capability to evaluate the inhibition of acetylcholinesterase activity by organophosphorous pesticides. Toxicology in Vitro, 2019, 56, 93-100.	1.1	19
113	Characterization of human pregnane X receptor activators identified from a screening of the Tox21 compound library. Biochemical Pharmacology, 2021, 184, 114368.	2.0	19
114	Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nature Communications, 2021, 12, 1398.	5.8	17
115	Triazole-Based Inhibitors of the Wnt/β-Catenin Signaling Pathway Improve Glucose and Lipid Metabolisms in Diet-Induced Obese Mice. Journal of Medicinal Chemistry, 2019, 62, 727-741.	2.9	16
116	Systematic Identification of Molecular Targets and Pathways Related to Human Organ Level Toxicity. Chemical Research in Toxicology, 2021, 34, 412-421.	1.7	16
117	Repurposing drugs as COVID-19 therapies: A toxicity evaluation. Drug Discovery Today, 2022, 27, 1983-1993.	3.2	16
118	Using Tox21 High-Throughput Screening Assays for the Evaluation of Botanical and Dietary Supplements. Applied in Vitro Toxicology, 2019, 5, 10-25.	0.6	15
119	Identification of Compounds That Inhibit Estrogen-Related Receptor Alpha Signaling Using High-Throughput Screening Assays. Molecules, 2019, 24, 841.	1.7	15
120	A quantitative high-throughput screen for modulators of IL-6 signaling: a model for interrogating biological networks using chemical libraries. Molecular BioSystems, 2009, 5, 1039.	2.9	14
121	Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride. Toxicology and Applied Pharmacology, 2013, 267, 155-166.	1.3	14
122	Predictive Models to Identify Small Molecule Activators and Inhibitors of Opioid Receptors. Journal of Chemical Information and Modeling, 2021, 61, 2675-2685.	2.5	14
123	In Silico Prediction of hPXR Activators Using Structure-Based Pharmacophore Modeling. Journal of Pharmaceutical Sciences, 2017, 106, 1752-1759.	1.6	13
124	Advances in high-throughput screening technology for toxicology. International Journal of Risk Assessment and Management, 2017, 20, 109.	0.2	13
125	The Toxmatrix: Chemo-Genomic Profiling Identifies Interactions That Reveal Mechanisms of Toxicity. Chemical Research in Toxicology, 2018, 31, 127-136.	1.7	12
126	Identification of known drugs targeting the endoplasmic reticulum stress response. Analytical and Bioanalytical Chemistry, 2015, 407, 5343-5351.	1.9	11

#	Article	IF	CITATIONS
127	One-Step Seeding of Neural Stem Cells with Vitronectin-Supplemented Medium for High-Throughput Screening Assays. Journal of Biomolecular Screening, 2016, 21, 1112-1124.	2.6	11
128	Detection of nanocarrier potentiation on drug induced phospholipidosis in cultured cells and primary hepatocyte spheroids by high content imaging and analysis. Toxicology and Applied Pharmacology, 2018, 348, 54-66.	1.3	11
129	Generation and Characterization of a Cell Line with Inducible Expression of Cav3.2 (T-Type) Channels. Assay and Drug Development Technologies, 2003, 1, 637-645.	0.6	10
130	Synthesis and evaluation of quinazolin-4-ones as hypoxia-inducible factor-1α inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5239-5243.	1.0	10
131	Identification of acetylcholinesterase inhibitors using homogenous cellâ€based assays in quantitative highâ€throughput screening platforms. Biotechnology Journal, 2017, 12, 1600715.	1.8	10
132	DL5050, a Selective Agonist for the Human Constitutive Androstane Receptor. ACS Medicinal Chemistry Letters, 2019, 10, 1039-1044.	1.3	10
133	Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. Toxicology in Vitro, 2021, 73, 105109.	1.1	10
134	Identification of environmental chemicals that activate p53 signaling after in vitro metabolic activation. Archives of Toxicology, 2022, 96, 1975-1987.	1.9	10
135	A High-Throughput Screen Identifies 2,9-Diazaspiro[5.5]Undecanes as Inducers of the Endoplasmic Reticulum Stress Response with Cytotoxic Activity in 3D Glioma Cell Models. PLoS ONE, 2016, 11, e0161486.	1.1	9
136	Identification of Angiogenesis Inhibitors Using a Co-culture Cell Model in a High-Content and High-Throughput Screening Platform. SLAS Technology, 2018, 23, 217-225.	1.0	9
137	High-content analysis of constitutive androstane receptor (CAR) translocation identifies mosapride citrate as a CAR agonist that represses gluconeogenesis. Biochemical Pharmacology, 2019, 168, 224-236.	2.0	9
138	Human constitutive androstane receptor agonist DL5016: A novel sensitizer for cyclophosphamide-based chemotherapies. European Journal of Medicinal Chemistry, 2019, 179, 84-99.	2.6	9
139	Drug Repositioning for Noonan and LEOPARD Syndromes by Integrating Transcriptomics With a Structure-Based Approach. Frontiers in Pharmacology, 2020, 11, 927.	1.6	9
140	<scp>AZD8055</scp> enhances <i>in vivo</i> efficacy of afatinib in chordomas. Journal of Pathology, 2021, 255, 72-83.	2.1	9
141	Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators. Methods in Molecular Biology, 2016, 1473, 33-42.	0.4	8
142	Differential modulation of FXR activity by chlorophacinone and ivermectin analogs. Toxicology and Applied Pharmacology, 2016, 313, 138-148.	1.3	8
143	Identification of compounds that modulate retinol signaling using a cell-based qHTS assay. Toxicology in Vitro, 2016, 32, 287-296.	1.1	8
144	HTS-Compatible β-Lactamase Transcriptional Reporter Gene Assay for Interrogating the Heat Shock Response Pathway. Current Chemical Genomics, 2009, 3, 1-6.	2.0	8

#	Article	IF	CITATIONS
145	High-Throughput Chemical Screening and Structure-Based Models to Predict hERG Inhibition. Biology, 2022, 11, 209.	1.3	8
146	Cell-Based Assay for Identifying the Modulators of Antioxidant Response Element Signaling Pathway. Methods in Molecular Biology, 2016, 1473, 55-62.	0.4	7
147	Bioactivity Signatures of Drugs vs. Environmental Chemicals Revealed by Tox21 High-Throughput Screening Assays. Frontiers in Big Data, 2019, 2, 50.	1.8	7
148	An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. Genomics, Proteomics and Bioinformatics, 2021, 19, 108-122.	3.0	7
149	A Cell-Based Î ² -Lactamase Reporter Gene Assay for the CREB Signaling Pathway. Current Chemical Genomics, 2009, 3, 7-12.	2.0	7
150	Acetylcholinesterase Inhibition Assays for High-Throughput Screening. Methods in Molecular Biology, 2022, 2474, 47-58.	0.4	7
151	Determination of Histone H2AX Phosphorylation in DT40 Cells. Methods in Molecular Biology, 2016, 1473, 71-76.	0.4	6
152	Evaluation of chemical compounds that inhibit neurite outgrowth using GFP-labeled iPSC-derived human neurons. NeuroToxicology, 2021, 83, 137-145.	1.4	6
153	A gene expression biomarker for predictive toxicology to identify chemical modulators of NF-κB. PLoS ONE, 2022, 17, e0261854.	1.1	6
154	Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Frontiers in Pharmacology, 0, 13, .	1.6	6
155	Inhibition of HERG potassium channels by domiphen bromide and didecyl dimethylammonium bromide. European Journal of Pharmacology, 2014, 737, 202-209.	1.7	5
156	Omics-Based Platform for Studying Chemical Toxicity Using Stem Cells. Journal of Proteome Research, 2018, 17, 579-589.	1.8	5
157	Quantitative Proteomic Profiling of Mitochondrial Toxicants in a Human Cardiomyocyte Cell Line. Frontiers in Genetics, 2020, 11, 719.	1.1	5
158	Resources for Developing Reliable and Reproducible <i>In Vitro</i> Toxicological Test Methods. Chemical Research in Toxicology, 2021, 34, 1367-1369.	1.7	5
159	Mitochondrial Membrane Potential Assay. Methods in Molecular Biology, 2022, 2474, 11-19.	0.4	5
160	Retro Drug Design: From Target Properties to Molecular Structures. Journal of Chemical Information and Modeling, 2022, 62, 2659-2669.	2.5	5
161	Using β-Lactamase and NanoLuc Luciferase Reporter Gene Assays to Identify Inhibitors of the HIF-1 Signaling Pathway. Methods in Molecular Biology, 2016, 1473, 23-31.	0.4	4
162	Identification and Profiling of Environmental Chemicals That Inhibit the TGFβ/SMAD Signaling Pathway. Chemical Research in Toxicology, 2019, 32, 2433-2444.	1.7	4

#	Article	IF	CITATIONS
163	Performance of the BG1Luc ER TA method in a qHTS format. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 287-96.	0.9	4
164	Transactivation and Coactivator Recruitment Assays for Measuring Farnesoid X Receptor Activity. Methods in Molecular Biology, 2016, 1473, 43-53.	0.4	3
165	High-Throughput and High-Content Micronucleus Assay in CHO-K1 Cells. Methods in Molecular Biology, 2016, 1473, 77-85.	0.4	3
166	High-Throughput Screening and Hazard Testing Prioritization. , 2020, , 75-86.		3
167	Cell-Based Assays to Identify ERR and ERR/PGC Modulators. Methods in Molecular Biology, 2022, 2474, 3-9.	0.4	3
168	Targeting CAR and Nrf2 improves cyclophosphamide bioactivation while reducing doxorubicin-induced cardiotoxicity in triple-negative breast cancer treatment. JCI Insight, 2022, 7, .	2.3	3
169	Phosphodiesterase 4 inhibitors enhance sexual pleasure-seeking activity in rodents. Pharmacology Biochemistry and Behavior, 2011, 98, 349-355.	1.3	2
170	High-throughput screening for identifying acetylcholinesterase inhibitors: Insights on novel inhibitors and the use of liver microsomes. SLAS Discovery, 2022, 27, 65-67.	1.4	2
171	Cell-Based Imaging Assay for Detection of Phospholipidosis. Methods in Molecular Biology, 2022, 2474, 73-82.	0.4	2
172	Cell-Based hERG Channel Inhibition Assay in High-Throughput Format. Methods in Molecular Biology, 2022, 2474, 21-28.	0.4	2
173	Reply to Kojo: Mechanisms of antioxidant-induced DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2029-E2029.	3.3	1
174	GFP-LC3 High-Content Assay for Screening Autophagy Modulators. Methods in Molecular Biology, 2022, 2474, 83-89.	0.4	1
175	Improving the solubility and antileukemia activity of Wnt/Ĵ²-catenin signaling inhibitors by disrupting molecular planarity. Bioorganic and Medicinal Chemistry, 2022, 69, 116890.	1.4	1
176	Cell-Based Assays to Identify Modulators of Nrf2/ARE Pathway. Methods in Molecular Biology, 2022, 2474, 59-69.	0.4	0
177	Identifying CAR Modulators Utilizing a Reporter Gene Assay. Methods in Molecular Biology, 2022, 2474, 29-38.	0.4	0