
John Westwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10939796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comprehensive Evaluation of Nasal and Bronchial Cytokines and Chemokines Following Experimental Rhinovirus Infection in Allergic Asthma: Increased Interferons (IFN-γ and IFN-λ) and Type 2 Inflammation (IL-5 and IL-13). EBioMedicine, 2017, 19, 128-138.	6.1	102
2	Identification of a Novel Allosteric Inhibitory Site on Tryptophan Hydroxylase 1 Enabling Unprecedented Selectivity Over all Related Hydroxylases. Frontiers in Pharmacology, 2017, 8, 240.	3.5	12
3	Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Science Translational Medicine, 2014, 6, 256ra134.	12.4	280
4	IL-33–Dependent Type 2 Inflammation during Rhinovirus-induced Asthma Exacerbations <i>In Vivo</i> . American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1373-1382.	5.6	500
5	Imatinib Attenuates Hypoxia-induced Pulmonary Arterial Hypertension Pathology via Reduction in 5-Hydroxytryptamine through Inhibition of Tryptophan Hydroxylase 1 Expression. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 78-89.	5.6	58
6	Genetic ablation of PI3Kγ results in defective ILâ€17RA signalling in T lymphocytes and increased ILâ€17 levels. European Journal of Immunology, 2012, 42, 3394-3404.	2.9	14
7	The effects of an anti–IL-13 mAb on cytokine levels and nasal symptoms following nasal allergen challenge. Journal of Allergy and Clinical Immunology, 2011, 128, 800-807.e9.	2.9	59
8	Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes. Immunology Letters, 2011, 138, 15-18.	2.5	16
9	A Novel Murine Model of Severe Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1171-1182.	5.6	231
10	Evidence That the Lipid Phosphatase SHIP-1 Regulates T Lymphocyte Morphology and Motility. Journal of Immunology, 2011, 186, 4936-4945.	0.8	21
11	Evidence for PI3K-dependent CXCR3 agonist-induced degranulation of human cord blood-derived mast cells. Molecular Immunology, 2010, 47, 2367-2377.	2.2	21
12	Expression of Transient Receptor Potential C6 Channels in Human Lung Macrophages. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 296-304.	2.9	55
13	Essential role of phosphoinositide 3â€kinase gamma in eosinophil chemotaxis within acute pulmonary inflammation. Immunology, 2009, 126, 413-422.	4.4	33
14	Phosphoinositide Lipid Phosphatases: Natural Regulators of Phosphoinositide 3-Kinase Signaling in T Lymphocytes. Journal of Biological Chemistry, 2008, 283, 2465-2469.	3.4	75
15	PI3KÎ ³ is the dominant isoform involved in migratory responses of human T lymphocytes: Effects of ex vivo maintenance and limitations of non-viral delivery of siRNA. Cellular Signalling, 2007, 19, 2528-2539.	3.6	39
16	Heterologous regulation of chemokine receptor signaling by the lipid phosphatase SHIP in lymphocytes. Cellular Signalling, 2005, 17, 1194-1202.	3.6	24
17	Therapeutic scope of modulation of non-voltage-gated cation channelsâ [~] †. Drug Discovery Today, 2005, 10, 129-137.	6.4	20
18	Airway inflammation: chemokine-induced neutrophilia and the class?I phosphoinositide 3-kinases. European Journal of Immunology, 2005, 35, 1283-1291.	2.9	70

JOHN WESTWICK

#	Article	IF	CITATIONS
19	Effect of corticosteroids on nitric oxide production in inflammatory bowel disease: are leukocytes the site of action?. American Journal of Physiology - Renal Physiology, 2005, 288, C261-G267.	3.4	22
20	Expression of Transient Receptor Potential C6 and Related Transient Receptor Potential Family Members in Human Airway Smooth Muscle and Lung Tissue. American Journal of Respiratory Cell and Molecular Biology, 2004, 30, 145-154.	2.9	91
21	Activation of Human TRPC6 Channels by Receptor Stimulation. Journal of Biological Chemistry, 2004, 279, 22047-22056.	3.4	84
22	Transient receptor potential (TRP) channels as potential drug targets in respiratory disease. Cell Calcium, 2003, 33, 551-558.	2.4	66
23	Receptor-operated Ca2+ influx channels in leukocytes: a therapeutic target?. Trends in Pharmacological Sciences, 2002, 23, 63-70.	8.7	66
24	Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. Journal of Clinical Investigation, 1999, 104, 1061-1069.	8.2	156
25	Anti-Inflammatory Actions of Interleukin-13. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 1007-1012.	2.9	28
26	Cytokine-induced Apoptosis in Epithelial HT-29 Cells Is Independent of Nitric Oxide Formation. Journal of Biological Chemistry, 1999, 274, 17193-17201.	3.4	80
27	C-X-C and C-C chemokine expression and secretion by the human colonic epithelial cell line, HT-29: differential effect of T lymphocyte-derived cytokines. European Journal of Immunology, 1999, 29, 530-536.	2.9	58
28	Chemokines and T Lymphocytes. Immunity, 1998, 9, 1-11.	14.3	401
29	INTERLEUKIN 8 AND MONOCYTE CHEMOATTRACTANT PROTEIN 1 PRODUCTION BY CULTURED HUMAN AIRWAY SMOOTH MUSCLE CELLS. Cytokine, 1998, 10, 346-352.	3.2	44
30	The CC Chemokine Monocyte Chemotactic Peptide-1 Activates both the Class I p85/p110 Phosphatidylinositol 3-Kinase and the Class II PI3K-C2α. Journal of Biological Chemistry, 1998, 273, 25987-25995.	3.4	163
31	Human Vascular Smooth Muscle Cells Express Receptors for CC Chemokines. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 397-403.	2.4	135
32	Chemokines: understanding their role in T-lymphocyte biology. Biochemical Journal, 1998, 333, 457-470.	3.7	202
33	Activation of Phosphatidylinositol 3-Kinase by Interleukin-13. Journal of Biological Chemistry, 1997, 272, 12626-12633.	3.4	75
34	Evidence that a kinase distinct from protein kinase C and phosphatidylinositol 3-kinase mediates ligation-dependent serine/threonine phosphorylation of the T-lymphocyte co-stimulatory molecule CD28. Biochemical Journal, 1997, 326, 249-257.	3.7	11
35	Stimulation of tyrosine phosphorylation and phosphatidylinositol 3-kinase by MCP-1 in THP-1 cells. Biochemical Society Transactions, 1997, 25, 216S-216S.	3.4	3
36	Chemokine production by human vascular smooth muscle cells: modulation by IL-13. British Journal of Pharmacology, 1997, 122, 749-757.	5.4	90

JOHN WESTWICK

#	Article	IF	CITATIONS
37	Interleukinâ€8 production by the human colon epithelial cell line HTâ€29: modulation by interleukinâ€13. British Journal of Pharmacology, 1996, 119, 351-359.	5.4	31
38	Differential effects of protein kinase C inhibitors on chemokine production in human synovial fibroblasts. British Journal of Pharmacology, 1996, 117, 1245-1253.	5.4	23
39	A role for protein phosphorylation in modulating Ca2+ elevation in rabbit platelets treated with thapsigargin. Biochemical Journal, 1996, 313, 83-89.	3.7	16
40	Stimulation of signal transduction pathways by MCP-1 in human monocytes and THP-1 cells. Biochemical Society Transactions, 1996, 24, 69S-69S.	3.4	3
41	Characterisation of a Serine/Threonine Kinase Which Mediates CD28 Phosphorylation Following Activation By B7.1. Biochemical Society Transactions, 1996, 24, 87S-87S.	3.4	0
42	A role for RANTES in T lymphocyte proliferation. Biochemical Society Transactions, 1996, 24, 93S-93S.	3.4	10
43	Regulation and expression of chemokines: potential role in glomerulonephritis. Journal of Leukocyte Biology, 1996, 59, 75-80.	3.3	55
44	Stimulation of platelets with platelet-activating factor induces changes in the subcellular distribution and activity of the tyrosine kinase pp60. Biochemical Society Transactions, 1995, 23, 194S-194S.	3.4	1
45	The phosphoinositide 3-kinase inhibitor wortmannin inhibits CD28-mediated T cell co-stimulation. Biochemical Society Transactions, 1995, 23, 282S-282S.	3.4	5
46	A role for phosphoinositide 3 - kinase in RANTES induced chemotaxis of T lymphocytes. Biochemical Society Transactions, 1995, 23, 283S-283S.	3.4	6
47	Antibody ligation of CD7 leads to association with phosphoinositide 3-kinase and phosphatidylinositol 3,4,5-trisphosphate formation in T lymphocytes. European Journal of Immunology, 1995, 25, 502-507.	2.9	24
48	Inhibition of CD28-mediated T cell costimulation by the phosphoinositide 3-kinase inhibitor wortmannin. European Journal of Immunology, 1995, 25, 526-532.	2.9	75
49	Interleukin-1-induced IL-8 and IL-6 gene expression and production in human mesangial cells is differentially regulated by cAMP. Kidney International, 1995, 48, 1767-1777.	5.2	33
50	D-myo-Inositol 1,4,5-Trisphosphate Analogues Modified at the 3-Position Inhibit Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 1995, 270, 12075-12084.	3.4	12
51	Inducible nitric oxide synthase activity and expression in a human colonic epithelial cell line, HTâ€⊋9. British Journal of Pharmacology, 1995, 116, 2866-2872.	5.4	72
52	Calcium release activity and metabolism of inositol 1,4,5-trisphosphate in T cells. Modulation by novel inositol 1,4,5-trisphosphate 5-phosphatase inhibitors. FEBS Journal, 1994, 222, 515-523.	0.2	6
53	Nicotinic acetylcholine receptors in primary cultures of hippocampal neurons: pharmacology and Ca++ permeability. Biochemical Society Transactions, 1994, 22, 294S-294S.	3.4	15
54	Ligation of CD28 receptor by B7 induces formation of D-3 phosphoinositides in T lymphocytes independently of T cell receptor/CD3 activation. European Journal of Immunology, 1993, 23, 2572-2577.	2.9	119

JOHN WESTWICK

#	Article	IF	CITATIONS
55	Tyrosine-kinase activity in rabbit platelets stimulated with platelet-activating factor. The effect of inhibiting tyrosine kinase with genistein on platelet-signal-molecule elevation and functional responses. FEBS Journal, 1993, 216, 639-651.	0.2	31
56	Endothelinâ€1 in the rabbit: interactions with cycloâ€oxygenase and NOâ€synthase products. British Journal of Pharmacology, 1993, 108, 838-843.	5.4	15
57	Cytokines Contribute to Airway Dysfunction in Antigen-challenged Guinea Pigs: Inhibition of Airway Hyperreactivity, Pulmonary Eosinophil Accumulation, and Tumor Necrosis Factor Generation by Pretreatment with an Interleukin-1 Receptor Antagonist. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 365-369.	2.9	111
58	L-Arginine/Nitric Oxide Pathway: A Possible Signal Transduction Mechanism for the Regulation of the Chemokine IL-8 in Human Mesangial Cells. Advances in Experimental Medicine and Biology, 1993, 351, 65-75.	1.6	15
59	IL-1 receptor antagonist inhibits monocyte chemotactic peptide 1 generation by human mesangial cells. Kidney International, 1992, 42, 95-101.	5.2	74
60	Cytokine-activated human mesangial cells generate the neutrophil chemoattractant, interleukin 8. Kidney International, 1991, 40, 86-90.	5.2	81
61	Human Mesangial Cell-Derived Interleukin 8 and Interleukin 6: Modulation by an Interleukin 1 Receptor Antagonist. Advances in Experimental Medicine and Biology, 1991, 305, 137-145.	1.6	3
62	Evidence for two platelet activating factor receptors on eosinophils: Dissociation between PAF-induced intracellular calcium mobilization degranulation and superoxides anion generation in eosinophils. Biochemical and Biophysical Research Communications, 1989, 162, 511-521.	2.1	75
63	Characterization of platelet-activating factor-induced elevation of cytosolic free calcium concentration in eosinophils. FEBS Letters, 1989, 243, 41-46.	2.8	42
64	Cyclosporin therapy <i>in vivo</i> attenuates the response to vasodilators in the isolated perfused kidney of the rabbit. British Journal of Pharmacology, 1989, 98, 463-468.	5.4	26
65	Endothelin induces an increase in renal vascular resistance and a fall in glomerular filtration rate in the rabbit isolated perfused kidney. British Journal of Pharmacology, 1989, 98, 155-160.	5.4	41
66	Inhibition by staurosporine of mitogen-induced calcium mobilisation in human T lymphoblasts. FEBS Letters, 1988, 239, 363-366.	2.8	20
67	Activation of protein kinase C inhibits sodium fluoride-induced elevation of human platelet cytosolic free calcium and thromboxane B2 generation. Biochemical and Biophysical Research Communications, 1986, 136, 381-389.	2.1	57