
T Staffan Lundström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10937730/publications.pdf Version: 2024-02-01

<u>Τ Staffan LundstdöΜ</u>

#	Article	IF	CITATIONS
1	Influence from process parameters on void formation in resin transfer molding. Polymer Composites, 1994, 15, 25-33.	4.6	164
2	Effect of Perturbation of Fibre Architecture on Permeability Inside Fibre Tows. Journal of Composite Materials, 1995, 29, 424-443.	2.4	70
3	Performance improvement of a solar air heater by covering the absorber plate with a thin porous material. Energy, 2020, 190, 116437.	8.8	54
4	Bubble motion through non-crimp fabrics during composites manufacturing. Composites Part A: Applied Science and Manufacturing, 2008, 39, 243-251.	7.6	48
5	Bubble transport through constricted capillary tubes with application to resin transfer molding. Polymer Composites, 1996, 17, 770-779.	4.6	46
6	A Statistical Approach to Permeability of Clustered Fibre Reinforcements. Journal of Composite Materials, 2004, 38, 1137-1149.	2.4	43
7	Numerical Study of the Local Permeability of Noncrimp Fabrics. Journal of Composite Materials, 2005, 39, 929-947.	2.4	42
8	Bubble formation and motion in non-crimp fabrics with perturbed bundle geometry. Composites Part A: Applied Science and Manufacturing, 2010, 41, 83-92.	7.6	41
9	Discrete and Continuous Modeling of Heat and Mass Transport in Drying of a Bed of Iron Ore Pellets. Drying Technology, 2012, 30, 760-773.	3.1	32
10	Wetting dynamics in multiscale porous media. Porous poreâ€doublet model, experiment and theory. AICHE Journal, 2008, 54, 372-380.	3.6	28
11	Darcy's Law for Flow in a Periodic Thin Porous Medium Confined Between Two Parallel Plates. Transport in Porous Media, 2016, 115, 473-493.	2.6	21
12	Longitudinal Dispersion Coefficient: Effects of Particle-Size Distribution. Transport in Porous Media, 2013, 99, 1-16.	2.6	19
13	Influence of Air Humidity on Drying of Individual Iron Ore Pellets. Drying Technology, 2011, 29, 1101-1111.	3.1	16
14	Simulation of convective drying of a cylindrical iron ore pellet. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21, 703-716.	2.8	12
15	The calculations of dispersion coefficients inside twoâ€dimensional randomly packed beds of circular particles. AICHE Journal, 2013, 59, 1002-1011.	3.6	10
16	Review of the Numerical Modeling of Compression Molding of Sheet Molding Compound. Processes, 2020, 8, 179.	2.8	10
17	Investigation of thermal dispersion and intra-pore turbulent heat flux in porous media. International Journal of Heat and Fluid Flow, 2020, 81, 108523.	2.4	8
18	Investigation of Post-Darcy Flow in Thin Porous Media. Transport in Porous Media, 2021, 138, 157-184.	2.6	7

#	Article	IF	CITATIONS
19	Numerical simulation on void formation and migration using Stokes-Brinkman coupling with effective dual-scale fibrous porous media. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106683.	7.6	5
20	An investigation of particle deposition mechanisms during impregnation of dualâ€scale fabrics with micro particle image velocimetry. Polymer Composites, 2010, 31, 1232-1240.	4.6	4
21	Flow through a Two-Scale Porosity Material. Research Letters in Materials Science, 2009, 2009, 1-4.	0.2	3
22	Dynamic Distributed Storage of Stormwater in Sponge-Like Porous Bodies: Modelling Water Uptake. Water (Switzerland), 2020, 12, 2080.	2.7	3
23	Discrete and continuous modelling of convective heat transport in a thin porous layer of mono sized spheres. Heat and Mass Transfer, 2017, 53, 151-160.	2.1	2
24	Flow in thin domains with a microstructure: Lubrication and thin porous media. AIP Conference Proceedings, 2017, , .	0.4	1