List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1093709/publications.pdf Version: 2024-02-01

RADRADA RIII DINI

#	Article	IF	CITATIONS
1	SF3B1 homeostasis is critical for survival and therapeutic response in T cell leukemia. Science Advances, 2022, 8, eabj8357.	4.7	16
2	<i>NUP214–ABL1</i> fusion in childhood Tâ€ALL. Pediatric Blood and Cancer, 2022, 69, e29643.	0.8	4
3	mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells. Redox Biology, 2022, 51, 102268.	3.9	14
4	FLT3-ITD in Children with Early T-cell Precursor (ETP) Acute Lymphoblastic Leukemia: Incidence and Potential Target for Monitoring Minimal Residual Disease (MRD). Cancers, 2022, 14, 2475.	1.7	3
5	Childhood cancer in Italy: background, goals, and achievements of the Italian Paediatric Hematology Oncology Association (AIEOP). Tumori, 2021, 107, 370-375.	0.6	11
6	<scp>CD56</scp> , <scp>HLAâ€DR,</scp> and <scp>CD45</scp> recognize a subtype of childhood <scp>AML</scp> harboring <scp>CBFA2T3â€GLIS2</scp> fusion transcript. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 844-850.	1.1	10
7	Targeting mesenchymal stromal cells plasticity to reroute acute myeloid leukemia course. Blood, 2021, 138, 557-570.	0.6	26
8	Prognostic Role of Minimal Disseminated Disease and NOTCH1/FBXW7 Mutational Status in Children with Lymphoblastic Lymphoma: The AIEOP Experience. Diagnostics, 2021, 11, 1594.	1.3	4
9	An Extensive Quality Control and Quality Assurance (QC/QA) Program Significantly Improves Inter-Laboratory Concordance Rates of Flow-Cytometric Minimal Residual Disease Assessment in Acute Lymphoblastic Leukemia: An I-BFM-FLOW-Network Report. Cancers, 2021, 13, 6148.	1.7	24
10	Relapses and treatment-related events contributed equally to poor prognosis in children with ABL-class fusion positive B-cell acute lymphoblastic leukemia treated according to AIEOP-BFM protocols. Haematologica, 2020, 105, 1887-1894.	1.7	33
11	Nextâ€generation sequencing of PTEN mutations for monitoring minimal residual disease in Tâ€cell acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2020, 67, e28025.	0.8	3
12	The hematopoietic stem cell marker VNN2 is associated with chemoresistance in pediatric B-cell precursor ALL. Blood Advances, 2020, 4, 4052-4064.	2.5	5
13	Prognostic value of minimal residual disease measured by flow-cytometry in two cohorts of infants with acute lymphoblastic leukemia treated according to either MLL-Baby or Interfant protocols. Leukemia, 2020, 34, 3042-3046.	3.3	13
14	Health technology assessment–based approach to flow cytometric immunophenotyping of acute leukemias: a literature classification. Tumori, 2020, 106, 249-256.	0.6	0
15	Minimal residual disease analysis in childhood mature Bâ€cell leukaemia/lymphoma treated with AIEOP LNHâ€97 protocol with/without antiâ€CD20 administration. British Journal of Haematology, 2020, 189, e108-e111.	1.2	8
16	Flash survey on severe acute respiratory syndrome coronavirus-2 infections in paediatric patients on anticancer treatment. European Journal of Cancer, 2020, 132, 11-16.	1.3	155
17	Outcome of (Novel) Subgroups in 1257 Pediatric Patients with KMT2A-Rearranged Acute Myeloid Leukemia (AML) and the Significance of Minimal Residual Disease (MRD) Status: A Retrospective Study By the I-BFM-SG. Blood, 2020, 136, 26-27.	0.6	1
18	Hematopoietic stem cell transplantation for isolated extramedullary relapse of acute lymphoblastic leukemia in children. Bone Marrow Transplantation, 2019, 54, 275-283.	1.3	12

#	Article	IF	CITATIONS
19	Flow-Cytometric Monitoring of Minimal Residual Disease in Pediatric Patients With Acute Myeloid Leukemia: Recent Advances and Future Strategies. Frontiers in Pediatrics, 2019, 7, 412.	0.9	27
20	CD371 cell surface expression: a unique feature of <i>DUX4</i> -rearranged acute lymphoblastic leukemia. Haematologica, 2019, 104, e352-e355.	1.7	42
21	Cerebrospinal fluid analysis by 8-color flow cytometry in children with acute lymphoblastic leukemia. Leukemia and Lymphoma, 2019, 60, 2825-2828.	0.6	8
22	Flowâ€cytometric minimal residual disease monitoring in blood predicts relapse risk in pediatric Bâ€cell precursor acute lymphoblastic leukemia in trial AIEOPâ€BFMâ€ALL 2000. Pediatric Blood and Cancer, 2019, 66, e27590.	0.8	18
23	Epigenetic heterogeneity affects the risk of relapse in children with t(8;21)RUNX1-RUNX1T1-rearranged AML. Leukemia, 2018, 32, 1124-1134.	3.3	17
24	Pre―and postâ€ŧransplant minimal residual disease predicts relapse occurrence in children with acute lymphoblastic leukaemia. British Journal of Haematology, 2018, 180, 680-693.	1.2	44
25	International cooperative study identifies treatment strategy in childhood ambiguous lineage leukemia. Blood, 2018, 132, 264-276.	0.6	70
26	<scp>AlEOP</scp> â€ <scp>BFM</scp> Consensus Guidelines 2016 for Flow Cytometric Immunophenotyping of Pediatric Acute Lymphoblastic Leukemia. Cytometry Part B - Clinical Cytometry, 2018, 94, 82-93.	0.7	96
27	DNA variants in <i>DHFR</i> gene and response to treatment in children with childhood B ALL: revisited in AIEOP-BFM protocol. Pharmacogenomics, 2018, 19, 105-112.	0.6	11
28	Unrelated donor vs HLA-haploidentical α/β T-cell– and B-cell–depleted HSCT in children with acute leukemia. Blood, 2018, 132, 2594-2607.	0.6	101
29	A Novel t(8;14)(q24;q11) Rearranged Human Cell Line as a Model for Mechanistic and Drug Discovery Studies of NOTCH1-Independent Human T-Cell Leukemia. Cells, 2018, 7, 160.	1.8	9
30	The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature, 2018, 562, 373-379.	13.7	236
31	Genetic risk factors for VIPN in childhood acute lymphoblastic leukemia patients identified using whole-exome sequencing. Pharmacogenomics, 2018, 19, 1181-1193.	0.6	27
32	The presence of mutated and deleted <scp>PTEN</scp> is associated with an increased risk of relapse in childhood T cell acute lymphoblastic leukaemia treated with <scp>AIEOP</scp> â€ <scp>BFM ALL</scp> protocols. British Journal of Haematology, 2018, 182, 705-711.	1.2	30
33	Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group. Leukemia, 2017, 31, 18-25.	3.3	29
34	Phosphoproteomic analysis reveals hyperactivation of mTOR/STAT3 and LCK/Calcineurin axes in pediatric early T-cell precursor ALL. Leukemia, 2017, 31, 1007-1011.	3.3	27
35	Prognostic significance of flowâ€cytometry evaluation of minimal residual disease in children with acute myeloid leukaemia treated according to the <scp>AIEOP</scp> â€ <scp>AML</scp> 2002/01 study protocol. British Journal of Haematology, 2017, 177, 116-126.	1.2	54
36	A Case of Tâ€cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia. Pediatric Blood and Cancer, 2016, 63, 1660-1663.	0.8	10

#	Article	IF	CITATIONS
37	Expression of the immunoglobulin superfamily cell membrane adhesion molecule Cd146 in acute leukemia. Cytometry Part B - Clinical Cytometry, 2016, 90, 247-256.	0.7	5
38	Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematology,the, 2016, 3, e80-e86.	2.2	95
39	<i>CRLF2</i> over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia. Oncotarget, 2016, 7, 59260-59272.	0.8	24
40	Fine tuning of surface CRLF2 expression and its associated signaling profile in childhood B-cell precursor acute lymphoblastic leukemia. Haematologica, 2015, 100, e229-e232.	1.7	29
41	Detection and role of minimal disseminated disease in children with lymphoblastic lymphoma: The AIEOP experience. Pediatric Blood and Cancer, 2015, 62, 1906-1913.	0.8	32
42	Leukemia blast cell identification. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2015, 5, 74-85.	4.6	0
43	Minimal residual disease monitored after induction therapy by RQ-PCR can contribute to tailor treatment of patients with t(8;21) RUNX1-RUNX1T1 rearrangement. Haematologica, 2015, 100, e99-e101.	1.7	35
44	Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia. Haematologica, 2015, 100, 935-944.	1.7	64
45	Flow diagnostics essential code: A simple and brief format for the summary of leukemia phenotyping. , 2014, 86, 288-291.		10
46	Outcome of Early T-Cell Precursor Acute Lymphoblastic Leukemia in AIEOP Patients Treated with the AIEOP-BFM ALL 2000 Study. Blood, 2014, 124, 3780-3780.	0.6	1
47	Low <i>PKCα</i> expression within the MRD-HR stratum defines a new subgroup of childhood T-ALL with very poor outcome. Oncotarget, 2014, 5, 5234-5245.	0.8	20
48	Detection of PICALM-MLLT10 (CALM-AF10) and outcome in children with T-lineage acute lymphoblastic leukemia. Leukemia, 2013, 27, 2419-2421.	3.3	25
49	Flow diagnostics essential (FDE) code: A simple and brief format for the summary of leukemia phenotyping. , 2013, , n/a-n/a.		5
50	Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica, 2012, 97, 1582-1593.	1.7	95
51	Trisomy 7 and Deletion of the 9p21 Locus As Novel Acquired Abnormalities in a Case Of Pediatric Biphenotypic Acute Leukemia. Journal of Pediatric Hematology/Oncology, 2012, 34, e126-e129.	0.3	2
52	Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood, 2011, 118, 2077-2084.	0.6	370
53	MLL partner genes drive distinct gene expression profiles and genomic alterations in pediatric acute myeloid leukemia: an AIEOP study. Leukemia, 2011, 25, 560-563.	3.3	31
54	Identification of immunophenotypic signatures by clustering analysis in pediatric patients with Philadelphia chromosomeâ€positive acute lymphoblastic leukemia. American Journal of Hematology, 2010, 85, 138-141.	2.0	8

#	Article	IF	CITATIONS
55	Risk of Relapse of Childhood Acute Lymphoblastic Leukemia Is Predicted By Flow Cytometric Measurement of Residual Disease on Day 15 Bone Marrow. Journal of Clinical Oncology, 2009, 27, 5168-5174.	0.8	247
56	Advanced pediatric myelodysplastic syndromes: Can immunophenotypic characterization of blast cells be a diagnostic and prognostic tool?. Pediatric Blood and Cancer, 2009, 52, 357-363.	0.8	30
57	Time Point-Dependent Concordance of Flow Cytometry and RQ-PCR in the MRD Detection in Childhood ALL: The Experience of the AIEOP-BFM- ALL MRD Study Group. Blood, 2008, 112, 700-700.	0.6	3
58	Safety and efficacy of a caspofungin-based combination therapy for treatment of proven or probable aspergillosis in pediatric hematological patients. BMC Infectious Diseases, 2007, 7, 28.	1.3	60
59	Immunophenotype signature as a tool to define prognostic subgroups in childhood acute myeloid leukemia. Leukemia, 2006, 20, 888-891.	3.3	5
60	Spinal cord injury without radiographic abnormalities. European Journal of Pediatrics, 2006, 165, 108-111.	1.3	35
61	Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation. Experimental Hematology, 2006, 34, 934-942.	0.2	42
62	Symmetrical thalamic calcifications in a monozygotic twin: case report and literature review. Brain and Development, 2005, 27, 66-69.	0.6	7
63	Acute Lymphoid Leukaemias (ALL) and Minimal Residual Disease in ALL. , 0, , 89-104.		1
64	Phosphoproteomic Analysis Reveals a Different Proteomic Profile in Pediatric Patients With T-Cell Lymphoblastic Lymphoma or T-Cell Acute Lymphoblastic Leukemia. Frontiers in Oncology, 0, 12, .	1.3	2