Helen M Blau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10935992/publications.pdf

Version: 2024-02-01

188 34,532 80 176
papers citations h-index g-index

197 197 197 197 39144

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Tamoxifen treatment ameliorates contractile dysfunction of Duchenne muscular dystrophy stem cell-derived cardiomyocytes on bioengineered substrates. Npj Regenerative Medicine, 2022, 7, 19.	5.2	7
2	Primary cilia on muscle stem cells are critical to maintain regenerative capacity and are lost during aging. Nature Communications, 2022, 13, 1439.	12.8	35
3	AP-1 is a temporally regulated dual gatekeeper of reprogramming to pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
4	Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments. Biomaterials, 2021, 275, 120973.	11.4	18
5	Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes. Stem Cell Reports, 2021, 16, 2169-2181.	4.8	23
6	Reversing aging for heart repair. Science, 2021, 373, 1439-1440.	12.6	6
7	An In Vitro Model for Identifying Cardiac Side Effects of Anesthetics. Anesthesia and Analgesia, 2020, 130, e1-e4.	2.2	7
8	Tissue Stem Cells: Architects of Their Niches. Cell Stem Cell, 2020, 27, 532-556.	11.1	137
9	Skeletal Muscle Stem Cells. , 2019, , 273-293.		3
10	Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European Heart Journal, 2019, 40, 3685-3695.	2.2	100
	Tryper tropfile cardiomyopathy patients. European freart Journal, 2017, 10, 3003 3073.		_
11	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Reports, 2019, 27, 3939-3955.e6.	6.4	94
11	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell		94 152
	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Reports, 2019, 27, 3939-3955.e6.	6.4	
12	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Reports, 2019, 27, 3939-3955.e6. Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760. Humanizing the mdx mouse model of DMD: the long and the short of it. Npj Regenerative Medicine,	27.0	152
12	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Reports, 2019, 27, 3939-3955.e6. Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760. Humanizing the mdx mouse model of DMD: the long and the short of it. Npj Regenerative Medicine, 2018, 3, 4. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nature	6.4 27.0 5.2	152 87
12 13 14	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Reports, 2019, 27, 3939-3955.e6. Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760. Humanizing the mdx mouse model of DMD: the long and the short of it. Npj Regenerative Medicine, 2018, 3, 4. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nature Communications, 2018, 9, 1531.	6.4 27.0 5.2 12.8	152 87 73
12 13 14 15	Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Reports, 2019, 27, 3939-3955.e6. Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760. Humanizing the mdx mouse model of DMD: the long and the short of it. Npj Regenerative Medicine, 2018, 3, 4. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M. Nature Communications, 2018, 9, 1531. Short telomeres — A hallmark of heritable cardiomyopathies. Differentiation, 2018, 100, 31-36.	6.4 27.0 5.2 12.8	152 87 73

#	Article	IF	Citations
19	Telomere shortening is a hallmark of genetic cardiomyopathies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9276-9281.	7.1	51
20	Bioengineering strategies to accelerate stem cell therapeutics. Nature, 2018, 557, 335-342.	27.8	316
21	NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. Nature Cell Biology, 2018, 20, 900-908.	10.3	37
22	A robust Pax7EGFP mouse that enables the visualization of dynamic behaviors of muscle stem cells. Skeletal Muscle, 2018, 8, 27.	4.2	22
23	Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542, 115-118.	27.8	8,203
24	High-resolution myogenic lineage mapping by single-cell mass cytometry. Nature Cell Biology, 2017, 19, 558-567.	10.3	108
25	Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6675-6684.	7.1	160
26	An objective comparison of cell-tracking algorithms. Nature Methods, 2017, 14, 1141-1152.	19.0	399
27	Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7919-E7928.	7.1	81
28	Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency. Journal of Clinical Investigation, 2017, 127, 1683-1688.	8.2	42
29	Discovery of novel determinants of endothelial lineage using chimeric heterokaryons. ELife, 2017, 6, .	6.0	7
30	Human induced pluripotent stem cell–derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 2016, 22, 547-556.	30.7	573
31	Noninvasive Tracking of Quiescent and Activated Muscle Stem Cell (MuSC) Engraftment Dynamics In Vivo. Methods in Molecular Biology, 2016, 1460, 181-189.	0.9	2
32	Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13120-13125.	7.1	60
33	Transient delivery of modified mRNA encoding TERT rapidly extends telomeres in human cells. FASEB Journal, 2015, 29, 1930-1939.	0.5	85
34	Global Linking of Cell Tracks Using the Viterbi Algorithm. IEEE Transactions on Medical Imaging, 2015, 34, 911-929.	8.9	153
35	The central role of muscle stem cells in regenerative failure with aging. Nature Medicine, 2015, 21, 854-862.	30.7	340
36	Turning terminally differentiated skeletal muscle cells into regenerative progenitors. Nature Communications, 2015, 6, 7916.	12.8	41

#	Article	lF	CITATIONS
37	A benchmark for comparison of cell tracking algorithms. Bioinformatics, 2014, 30, 1609-1617.	4.1	345
38	Perspective for special Gurdon issue for differentiation: Can cell fusion inform nuclear reprogramming?. Differentiation, 2014, 88, 27-28.	1.9	2
39	Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nature Medicine, 2014, 20, 255-264.	30.7	545
40	Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nature Methods, 2014, 11, 572-578.	19.0	196
41	Objective comparison of particle tracking methods. Nature Methods, 2014, 11, 281-289.	19.0	805
42	Sir John Gurdon: Father of nuclear reprogramming. Differentiation, 2014, 88, 10-12.	1.9	7
43	Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nature Cell Biology, 2013, 15, 895-904.	10.3	114
44	Early role for IL-6 signalling during generation of induced pluripotent stem cells revealed by heterokaryon RNA-Seq. Nature Cell Biology, 2013, 15, 1244-1252.	10.3	88
45	A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB Journal, 2013, 27, 1107-1113.	0.5	31
46	Skeletal Muscle Stem Cells. , 2013, , 631-640.		0
47	Tumor suppressors: enhancers or suppressors of regeneration?. Development (Cambridge), 2013, 140, 2502-2512.	2.5	57
48	An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1911-1916.	7.1	38
49	Therapeutic angiogenesis due to balanced singleâ€vector delivery of VEGF and PDGFâ€BB. FASEB Journal, 2012, 26, 2486-2497.	0.5	89
50	A single cell bioengineering approach to elucidate mechanisms of adult stem cell self-renewal. Integrative Biology (United Kingdom), 2012, 4, 360-367.	1.3	16
51	Engineering a stem cell house into a home. Stem Cell Research and Therapy, 2011, 2, 3.	5 . 5	40
52	DNA Demethylation Dynamics. Cell, 2011, 146, 866-872.	28.9	568
53	Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments. Blood, 2011, 117, 4226-4233.	1.4	48
54	MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Research, 2011, 21, 798-810.	5. 5	61

#	Article	IF	CITATIONS
55	Structure–function analysis of varicella-zoster virus glycoprotein H identifies domain-specific roles for fusion and skin tropism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18412-18417.	7.1	44
56	Re"evolutionary―Regenerative Medicine. JAMA - Journal of the American Medical Association, 2011, 305, 87.	7.4	22
57	Skeletal Muscle Stem Cells. , 2011, , 347-363.		0
58	Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 2010, 463, 1042-1047.	27.8	620
59	Nuclear reprogramming to a pluripotent state by three approaches. Nature, 2010, 465, 704-712.	27.8	694
60	skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20750-20755.	7.1	73
61	Short Telomeres and Stem Cell Exhaustion Model Duchenne Muscular Dystrophy in mdx/mTR Mice. Cell, 2010, 143, 1059-1071.	28.9	428
62	Transient Inactivation of Rb and ARF Yields Regenerative Cells from Postmitotic Mammalian Muscle. Cell Stem Cell, 2010, 7, 198-213.	11.1	169
63	Skeletal Muscle Stem Cells. , 2009, , 249-257.		2
64	Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. FASEB Journal, 2009, 23, 1431-1440.	0.5	45
65	Reprogramming to a muscle fate by fusion recapitulates differentiation. Journal of Cell Science, 2009, 122, 1045-1053.	2.0	22
66	Artificial Stem Cell Niches. Advanced Materials, 2009, 21, 3255-3268.	21.0	203
67	A home away from home: Challenges and opportunities in engineering in vitro muscle satellite cell niches. Differentiation, 2009, 78, 185-194.	1.9	115
68	Perturbation of single hematopoietic stem cell fates in artificial niches. Integrative Biology (United) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
69	Designing materials to direct stem-cell fate. Nature, 2009, 462, 433-441.	27.8	1,276
70	Imaging \hat{I}^2 -Galactosidase Activity In Vivo Using Sequential Reporter-Enzyme Luminescence. Methods in Molecular Biology, 2009, 574, 249-259.	0.9	5
71	Self-renewal and expansion of single transplanted muscle stem cells. Nature, 2008, 456, 502-506.	27.8	760
72	Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nature Cell Biology, 2008, 10, 575-583.	10.3	219

#	Article	IF	CITATIONS
73	Cell Therapies for Muscular Dystrophy. New England Journal of Medicine, 2008, 359, 1403-1405.	27.0	28
74	Myoblasts and macrophages share molecular components that contribute to cell–cell fusion. Journal of Cell Biology, 2008, 180, 1005-1019.	5.2	118
75	Reevaluation of the Role of VEGF-B Suggests a Restricted Role in the Revascularization of the Ischemic Myocardium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1614-1620.	2.4	99
76	Skeletal Muscle Stem Cells. , 2008, , 386-397.		1
77	Myoblasts and macrophages share molecular components that contribute to cell-cell fusion. Journal of Experimental Medicine, 2008, 205, i7-i7.	8.5	0
78	Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4395-4400.	7.1	72
79	A universal technology for monitoring Gâ€proteinâ€coupled receptor activation <i>in vitro</i> and noninvasively in live animals. FASEB Journal, 2007, 21, 3819-3826.	0.5	36
80	A novel enzyme complementationâ€based assay for monitoring Gâ€proteinâ€coupled receptor internalization. FASEB Journal, 2007, 21, 3827-3834.	0.5	35
81	Localization of vascular response to VEGF is not dependent on heparin binding. FASEB Journal, 2007, 21, 2074-2085.	0.5	17
82	Noggin Suppression Enhances in Vitro Osteogenesis and Accelerates in Vivo Bone Formation. Journal of Biological Chemistry, 2007, 282, 26450-26459.	3.4	138
83	Increased host neuronal survival and motor function in BMT Parkinsonian mice: Involvement of immunosuppression. Journal of Comparative Neurology, 2007, 504, 690-701.	1.6	23
84	Anne McLaren (1927–2007). Differentiation, 2007, 75, 899-901.	1.9	0
85	Luminescent imaging of \hat{l}^2 -galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nature Methods, 2006, 3, 295-301.	19.0	122
86	A brief history of RNAi: the silence of the genes. FASEB Journal, 2006, 20, 1293-1299.	0.5	191
87	Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB Journal, 2006, 20, 2657-2659.	0.5	117
88	Optimizing Techniques for Tracking Transplanted Stem Cells In Vivo. Stem Cells, 2005, 23, 1251-1265.	3.2	120
89	Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biology, 2005, 7, 633-636.	10.3	556
90	Enzymatic detection of protein translocation. Nature Methods, 2005, 2, 521-527.	19.0	61

#	Article	IF	Citations
91	mRNA translation is not a prerequisite for small interfering RNA-mediated mRNA cleavage. Differentiation, 2005, 73, 287-293.	1.9	14
92	Critical role of microenvironmental factors in angiogenesis. Current Atherosclerosis Reports, 2005, 7, 227-234.	4.8	63
93	Overexpression of Dimethylarginine Dimethylaminohydrolase Reduces Tissue Asymmetric Dimethylarginine Levels and Enhances Angiogenesis. Circulation, 2005, 111, 1431-1438.	1.6	136
94	IGF-I increases bone marrow contribution to adult skeletal muscle and enhances the fusion of myelomonocytic precursors. Journal of Cell Biology, 2005, 171, 483-492.	5.2	64
95	Bone marrow contribution to skeletal muscle: A physiological response to stress. Developmental Biology, 2005, 279, 336-344.	2.0	131
96	Skeletal Muscle Stem Cells. , 2004, , 395-403.		0
97	Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13507-13512.	7.1	110
98	Nuclear reprogramming: A key to stem cell function in regenerative medicine. Nature Cell Biology, 2004, 6, 810-816.	10.3	133
99	Restriction enzyme–generated siRNA (REGS) vectors and libraries. Nature Genetics, 2004, 36, 183-189.	21.4	142
100	Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. Journal of Clinical Investigation, 2004, 113, 516-527.	8.2	440
101	Myoblast-mediated gene transfer for therapeutic angiogenesis and arteriogenesis. British Journal of Pharmacology, 2003, 140, 620-626.	5.4	33
102	Contribution of hematopoietic stem cells to skeletal muscle. Nature Medicine, 2003, 9, 1528-1532.	30.7	238
103	Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nature Cell Biology, 2003, 5, 959-966.	10.3	426
104	Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Developmental Biology, 2003, 262, 64-74.	2.0	90
105	Localized arteriole formation directly adjacent to the site of VEGF-Induced angiogenesis in muscle. Molecular Therapy, 2003, 7, 441-449.	8.2	71
106	Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2088-2093.	7.1	420
107	Protein–protein interactions monitored in mammalian cells via complementation of β-lactamase enzyme fragments. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3469-3474.	7.1	195
108	RIP2, a Checkpoint in Myogenic Differentiation. Molecular and Cellular Biology, 2002, 22, 5879-5886.	2.3	40

#	Article	IF	Citations
109	[9] Myoblast-mediated gene transfer for therapeutic angiogenesis. Methods in Enzymology, 2002, 346, 145-157.	1.0	23
110	Stem-cell fusion: A twist of fate. Nature, 2002, 419, 437-437.	27.8	49
111	Biological Progression from Adult Bone Marrow to Mononucleate Muscle Stem Cell to Multinucleate Muscle Fiber in Response to Injury. Cell, 2002, 111, 589-601.	28.9	737
112	VEGF Gene Delivery for Treatment of Ischemic Cardiovascular Disease. Trends in Cardiovascular Medicine, 2002, 12, 108-114.	4.9	59
113	Transient production of αâ€smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. Cytoskeleton, 2002, 51, 177-186.	4.4	45
114	Gene Delivery to Muscle. Current Protocols in Human Genetics, 2001, 31, Unit13.4.	3.5	48
115	Laminin-Induced Change in Conformation of Preexisting $\hat{l}\pm7\hat{l}^21$ Integrin Signals Secondary Myofiber Formation. Developmental Biology, 2001, 233, 148-160.	2.0	18
116	Purification of Mouse Primary Myoblasts Based on $\hat{l}\pm7$ Integrin Expression. Experimental Cell Research, 2001, 265, 212-220.	2.6	139
117	The well-tempered vessel. Nature Medicine, 2001, 7, 532-534.	30.7	105
118	Not the usual suspects: the unexpected sources of tissue regeneration. Journal of Clinical Investigation, 2001, 107, 1355-1356.	8.2	15
119	Induction of angiogenesis by implantation of encapsulated primary myoblasts expressing vascular endothelial growth factor. Journal of Gene Medicine, 2000, 2, 279-288.	2.8	48
120	Epidermal growth factor receptor dimerization monitored in live cells. Nature Biotechnology, 2000, 18, 218-222.	17.5	90
121	Interaction blues: protein interactions monitored in live mammalian cells by \hat{l}^2 -galactosidase complementation. Trends in Cell Biology, 2000, 10, 119-122.	7.9	54
122	VEGF Gene Delivery to Myocardium. Circulation, 2000, 102, 898-901.	1.6	672
123	[15] Monitoring protein-protein interactions in live mammalian cells by,8-galactosidase complementation. Methods in Enzymology, 2000, 328, 231-IN4.	1.0	24
124	Angiogenesis Monitored by Perfusion with a Space-Filling Microbead Suspension. Molecular Therapy, 2000, 1, 82-87.	8.2	42
125	A Novel Means of Drug Delivery: Myoblast-Mediated Gene Therapy and Regulatable Retroviral Vectors. Annual Review of Pharmacology and Toxicology, 2000, 40, 295-317.	9.4	35
126	Transcriptional Control. Molecular Cell, 2000, 6, 723-728.	9.7	130

#	Article	lF	CITATIONS
127	From Marrow to Brain: Expression of Neuronal Phenotypes in Adult Mice. Science, 2000, 290, 1775-1779.	12.6	1,480
128	Vasculogenesis and Angiogenesis. Journal of Vascular and Interventional Radiology, 2000, 11, 427-430.	0.5	0
129	The Phosphoprotein Protein PEA-15 Inhibits Fas- but Increases TNF-R1-Mediated Caspase-8 Activity and Apoptosis. Developmental Biology, 1999, 216, 16-28.	2.0	58
130	Plasticity of cell fate: Insights from heterokaryons. Seminars in Cell and Developmental Biology, 1999, 10, 267-272.	5.0	67
131	Inhibition of Solid Tumor Growth by Fas Ligand-Expressing Myoblasts. Somatic Cell and Molecular Genetics, 1998, 24, 281-289.	0.7	4
132	Expression of Bcl-XS alters cytokinetics and decreases clonogenic survival in K12 rat colon carcinoma cells. Oncogene, 1998, 17, 2981-2991.	5.9	10
133	Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nature Genetics, 1998, 20, 389-393.	21.4	117
134	Recent advances in inducible gene expression systems. Current Opinion in Biotechnology, 1998, 9, 451-456.	6.6	106
135	VEGF Gene Delivery to Muscle. Molecular Cell, 1998, 2, 549-558.	9.7	347
136	Highly Conserved RNA Sequences That Are Sensors of Environmental Stress. Molecular and Cellular Biology, 1998, 18, 7371-7382.	2.3	59
137	Fusion Competence of Myoblasts Rendered Genetically Null for N-Cadherin in Culture. Journal of Cell Biology, 1997, 138, 331-336.	5.2	81
138	Chapter 12 Methods for Myoblast Transplantation. Methods in Cell Biology, 1997, 52, 261-272.	1.1	40
139	Immune Response and Myoblasts That Express Fas Ligand. Science, 1997, 278, 1322-1324.	12.6	81
140	Rapid Plasmid Minipreps in Microplate Format from Culture to Gel. BioTechniques, 1997, 22, 388-390.	1.8	3
141	The fate of individual myoblasts after transplantation into muscles of DMD patients. Nature Medicine, 1997, 3, 970-977.	30.7	296
142	High-efficiency retroviral infection of primary myoblasts. Somatic Cell and Molecular Genetics, 1997, 23, 203-209.	0.7	78
143	Death of solid tumor cells induced by fas ligand expressing primary myoblasts. Somatic Cell and Molecular Genetics, 1997, 23, 249-257.	0.7	15
144	Spectrophotometric Quantitation of Tissue Culture Cell Number in Any Medium. BioTechniques, 1996, 21, 260-266.	1.8	23

#	Article	IF	CITATIONS
145	Defective myogenesis in NFB-s mutant associated with a saturable suppression of MYF5 activity. Somatic Cell and Molecular Genetics, 1996, 22, 349-361.	0.7	O
146	A method to codetect introduced genes and their products in gene therapy protocols. Nature Biotechnology, 1996, 14, 1012-1016.	17.5	51
147	Tetracycline-regulated gene expression following direct gene transfer into mouse skeletal muscle. Somatic Cell and Molecular Genetics, 1995, 21, 233-240.	0.7	54
148	Muscle-Mediated Gene Therapy. New England Journal of Medicine, 1995, 333, 1554-1556.	27.0	103
149	The Fate of Myoblasts Following Transplantation into Mature Muscle. Experimental Cell Research, 1995, 220, 383-389.	2.6	80
150	Gene Therapy â€" A Novel Form of Drug Delivery. New England Journal of Medicine, 1995, 333, 1204-1207.	27.0	122
151	Membrane-bound neomycin phosphotransferase confers drug-resistance in mammalian cells: A marker for high-efficiency targeting of genes encoding secreted and cell-surface proteins. Somatic Cell and Molecular Genetics, 1994, 20, 153-162.	0.7	6
152	Myoblasts in pattern formation and gene therapy. Trends in Genetics, 1993, 9, 269-274.	6.7	52
153	Three Slow Myosin Heavy Chains Sequentially Expressed in Developing Mammalian Skeletal Muscle. Developmental Biology, 1993, 158, 183-199.	2.0	203
154	Tumor suppression by RNA from the 3′ untranslated region of α-tropomyosin. Cell, 1993, 75, 1107-1117.	28.9	198
154 155	Tumor suppression by RNA from the 3′ untranslated region of α-tropomyosin. Cell, 1993, 75, 1107-1117. Plasticity of the Differentiated State., 1993,, 25-42.	28.9	0
		28.9	
155	Plasticity of the Differentiated State. , 1993, , 25-42.	28.9	0
155 156	Plasticity of the Differentiated State., 1993,, 25-42. Myoblast Mediated Gene Therapy., 1993,, 37-47. Differentiation Requires Continuous Active Control. Annual Review of Biochemistry, 1992, 61,		0
156 157	Plasticity of the Differentiated State., 1993,, 25-42. Myoblast Mediated Gene Therapy., 1993,, 37-47. Differentiation Requires Continuous Active Control. Annual Review of Biochemistry, 1992, 61, 1213-1230. Muscle fiber pattern is independent of cell lineage in postnatal rodent development. Cell, 1992, 68,	11.1	0 0 152
155 156 157	Plasticity of the Differentiated State., 1993, , 25-42. Myoblast Mediated Gene Therapy., 1993, , 37-47. Differentiation Requires Continuous Active Control. Annual Review of Biochemistry, 1992, 61, 1213-1230. Muscle fiber pattern is independent of cell lineage in postnatal rodent development. Cell, 1992, 68, 659-671. β-Enolase is a marker of human myoblast heterogeneity prior to differentiation. Developmental Biology,	11.1 28.9	0 0 152 193
155 156 157 158	Plasticity of the Differentiated State., 1993,, 25-42. Myoblast Mediated Gene Therapy., 1993,, 37-47. Differentiation Requires Continuous Active Control. Annual Review of Biochemistry, 1992, 61, 1213-1230. Muscle fiber pattern is independent of cell lineage in postnatal rodent development. Cell, 1992, 68, 659-671. β-Enolase is a marker of human myoblast heterogeneity prior to differentiation. Developmental Biology, 1992, 151, 626-629. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast	11.1 28.9 2.0	0 0 152 193 26

#	Article	IF	CITATIONS
163	Letters to the editor. Muscle and Nerve, 1992, 15, 1209-1215.	2.2	28
164	Effect of cell history on response to helix–loop–helix family of myogenic regulators. Nature, 1990, 344, 454-458.	27.8	163
165	Migration of myoblasts across basal lamina during skeletal muscle development. Nature, 1990, 345, 350-353.	27.8	194
166	Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: Implications for cell and gene therapy. Somatic Cell and Molecular Genetics, 1990, 16, 557-565.	0.7	262
167	Regulation of Regional Specialization in Muscle Fibres. , 1990, , 265-278.		1
168	Negative control of the helix-loop-helix family of myogenic regulators in the NFB mutant. Cell, 1990, 62, 493-502.	28.9	71
169	Development of muscle fiber types in the prenatal rat hindlimb. Developmental Biology, 1990, 138, 256-274.	2.0	185
170	Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Developmental Biology, 1990, 138, 275-295.	2.0	151
171	Purification and Proliferation of Human Myoblasts Isolated with Fluorescence Activated Cell Sorting. Advances in Experimental Medicine and Biology, 1990, 280, 97-100.	1.6	4
172	Localization of Muscle Gene Products in Nuclear Domains: Does this Constitute a Problem for Myoblast Therapy?. Advances in Experimental Medicine and Biology, 1990, 280, 167-172.	1.6	9
173	Retroviral Lineage Markers for Assessing Myoblast Fate In Vivo. Advances in Experimental Medicine and Biology, 1990, 280, 201-203.	1.6	11
174	In vivo aging of human fibroblasts does not alter nuclear plasticity in heterokaryons. Somatic Cell and Molecular Genetics, 1989, 15, 191-202.	0.7	4
175	How fixed is the differentiated state?. Trends in Genetics, 1989, 5, 268-272.	6.7	65
176	Localization of muscle gene products in nuclear domains. Nature, 1989, 337, 570-573.	27.8	300
177	Improved media for normal human muscle satellite cells: Serum-free clonal growth and enhanced growth with low serum. In Vitro Cellular & Developmental Biology, 1988, 24, 833-844.	1.0	97
178	Isolation of human myoblasts with the fluorescence-activated cell sorter. Experimental Cell Research, 1988, 174, 252-265.	2.6	144
179	Hierarchies of regulatory genes may specify mammalian development. Cell, 1988, 53, 673-674.	28.9	54
180	Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell, 1988, 52, 503-513.	28.9	531

#	Article	IF	CITATIONS
181	Metabolic properties of human acetylcholine receptors can be characterized on cultured human muscle. Experimental Cell Research, 1986, 166, 379-390.	2.6	7
182	Developmental progression of myosin gene expression in cultured muscle cells. Cell, 1986, 46, 1075-1081.	28.9	178
183	The pattern of actin expression in human fibroblast $ ilde{A}-$ mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. Cell, 1986, 47, 123-130.	28.9	77
184	Muscle Gene Expression in Heterokaryons. Advances in Experimental Medicine and Biology, 1985, 182, 231-247.	1.6	18
185	Reprogramming cell differentiation in the absence of DNA synthesis. Cell, 1984, 37, 879-887.	28.9	145
186	Thyroglobulin-independent, cell-mediated cytotoxicity of human eye muscle cells in tissue culture by lymphocytes of a patient with Graves' ophthalmopathy. Life Sciences, 1983, 32, 45-53.	4.3	34
187	Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell, 1983, 32, 1171-1180.	28.9	808
188	Manipulation of myogenesis in vitro: Reversible inhibition by DMSO. Cell, 1979, 17, 95-108.	28.9	76