Peng Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10934073/publications.pdf

Version: 2024-02-01

18	2,651	14	17
papers	citations	h-index	g-index
18	18	18	4229
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular Cell, 2016, 62, 335-345.	9.7	1,148
2	mRNA circularization by METTL3–elF3h enhances translation and promotes oncogenesis. Nature, 2018, 561, 556-560.	27.8	498
3	Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14613-14618.	7.1	189
4	Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors. PLoS Pathogens, 2011, 7, e1002176.	4.7	167
5	Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell, 2021, 184, 2843-2859.e20.	28.9	108
6	miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Molecular Therapy, 2015, 23, 1465-1474.	8.2	101
7	Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4). Nucleic Acids Research, 2014, 42, 11777-11791.	14.5	87
8	A Biogenesis Step Upstream of Microprocessor Controls miR-17â^1/492 Expression. Cell, 2015, 162, 885-899.	28.9	85
9	Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs. Cell Reports, 2016, 16, 1861-1873.	6.4	70
10	An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell, 2018, 22, 851-864.e5.	11.1	47
11	A two-step lineage reprogramming strategy to generate functionally competent human hepatocytes from fibroblasts. Cell Research, 2019, 29, 696-710.	12.0	43
12	Global miRNA dosage control of embryonic germ layer specification. Nature, 2021, 593, 602-606.	27.8	39
13	Decoding the temporal and regional specification of microglia in the developing human brain. Cell Stem Cell, 2022, 29, 620-634.e6.	11.1	27
14	A plant immune protein enables broad antitumor response by rescuing microRNA deficiency. Cell, 2022, 185, 1888-1904.e24.	28.9	24
15	Optimization of Bcl11a Knockdown By miRNA Scaffold Embedded Shrnas Leading to Enhanced Induction of Fetal Hemoglobin in Erythroid Cells for the Treatment of Beta-Hemoglobinopathies. Blood, 2014, 124, 2150-2150.	1.4	8
16	DROSHA Knockout Leads to Enhancement of Viral Titers for Vectors Encoding miRNA-Adapted shRNAs. Molecular Therapy - Nucleic Acids, 2018, 12, 591-599.	5.1	5
17	Heterologous expression of artificial miRNAs from rice dwarf virus in transgenic rice. Plant Cell, Tissue and Organ Culture, 2014, 116, 353-360.	2.3	4
18	RDR1-mediated broad antitumor response: a novel strategy manipulating miRNAs as a powerful weapon. , 0, , .		1