Wenwu Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10933709/publications.pdf

Version: 2024-02-01

1163117 1199594 12 497 8 12 citations h-index g-index papers 12 12 12 281 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Review of Thermal Error Modeling Methods for Machine Tools. Applied Sciences (Switzerland), 2021, 11, 5216.	2.5	39
2	Temperature simulation and thermal equilibrium analysis of the ball screw feed drive system under various working conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 4844-4856.	2.1	6
3	Investigation of Drilling Machinability of Compacted Graphite Iron under Dry and Minimum Quantity Lubrication (MQL). Metals, 2019, 9, 1095.	2.3	7
4	Dry and minimum quantity lubrication high-throughput drilling of compacted graphite iron. Machining Science and Technology, 2018, 22, 652-670.	2.5	8
5	Investigation on the influence of interference fit on the static and dynamic characteristics of spindle system. International Journal of Advanced Manufacturing Technology, 2018, 99, 1953-1966.	3.0	22
6	Thermal error modeling of spindle based on the principal component analysis considering temperature-changing process. International Journal of Advanced Manufacturing Technology, 2018, 99, 1341-1349.	3.0	18
7	Investigation of non-uniform preload effect on stiffness behavior of angular contact ball bearings. Advances in Mechanical Engineering, 2017, 9, 168781401769411.	1.6	7
8	Boundary conditions optimization of spindle thermal error analysis and thermal key points selection based on inverse heat conduction. International Journal of Advanced Manufacturing Technology, 2017, 90, 2803-2812.	3.0	18
9	Thermal-deformation coupling in thermal network for transient analysis of spindle-bearing system. International Journal of Thermal Sciences, 2016, 104, 1-12.	4.9	85
10	A review on spindle thermal error compensation in machine tools. International Journal of Machine Tools and Manufacture, 2015, 95, 20-38.	13.4	227
11	Investigating effects of non-uniform preload on the thermal characteristics of angular contact ball bearings through simulations. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 667-681.	1.8	12
12	Thermal error modeling of the spindle based on multiple variables for the precision machine tool. International Journal of Advanced Manufacturing Technology, 2014, 72, 1415-1427.	3.0	48