
Paras Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10933512/publications.pdf Version: 2024-02-01

DADACIAIN

#	Article	IF	CITATIONS
1	Rapid, sensitive, and low-cost detection of Escherichia coli bacteria in contaminated water samples using a phage-based assay. Scientific Reports, 2022, 12, 7741.	3.3	11
2	A Type IA DNA/RNA Topoisomerase with RNA Hydrolysis Activity Participates in Ribosomal RNA Processing. Journal of Molecular Biology, 2020, 432, 5614-5631.	4.2	7
3	Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. Journal of Bacteriology, 2020, 202, .	2.2	8
4	Early Detection of Emergent Extensively Drug-Resistant Tuberculosis by Flow Cytometry-Based Phenotyping and Whole-Genome Sequencing. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
5	Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of Mycobacterium tuberculosis through Nutrient Auxotrophy. MBio, 2018, 9, .	4.1	50
6	Enhanced respiration prevents drug tolerance and drug resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4495-4500.	7.1	157
7	Evaluation of a High-Intensity Green Fluorescent Protein Fluorophage Method for Drug- Resistance Diagnosis in Tuberculosis for Isoniazid, Rifampin, and Streptomycin. Frontiers in Microbiology, 2016, 7, 922.	3.5	4
8	Fluorescent Reporter DS6A Mycobacteriophages Reveal Unique Variations in Infectibility and Phage Production in Mycobacteria. Journal of Bacteriology, 2016, 198, 3220-3232.	2.2	31
9	Dual-Reporter Mycobacteriophages (Φ ² DRMs) Reveal Preexisting Mycobacterium tuberculosis Persistent Cells in Human Sputum. MBio, 2016, 7, .	4.1	67
10	A Novel Reporter Phage To Detect Tuberculosis and Rifampin Resistance in a High-HIV-Burden Population. Journal of Clinical Microbiology, 2015, 53, 2188-2194.	3.9	24
11	Specialized Transduction Designed for Precise High-Throughput Unmarked Deletions in Mycobacterium tuberculosis. MBio, 2014, 5, e01245-14.	4.1	135
12	Enhanced Specialized Transduction Using Recombineering in Mycobacterium tuberculosis. MBio, 2014, 5, e01179-14.	4.1	25
13	Noncanonical SMC protein in <i>Mycobacterium smegmatis</i> restricts maintenance of <i>Mycobacterium fortuitum</i> plasmids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13264-13271.	7.1	58
14	Comparative Proteomics Identifies the Cell-Associated Lethality of M.Âtuberculosis RelBE-like Toxin-Antitoxin Complexes. Structure, 2013, 21, 627-637.	3.3	27
15	Ϊ• ² GFP10, a High-Intensity Fluorophage, Enables Detection and Rapid Drug Susceptibility Testing of Mycobacterium tuberculosis Directly from Sputum Samples. Journal of Clinical Microbiology, 2012, 50, 1362-1369.	3.9	69
16	Characterization of DNA topoisomerase I from Mycobacterium tuberculosis: DNA cleavage and religation properties and inhibition of its activity. Archives of Biochemistry and Biophysics, 2012, 528, 197-203.	3.0	26
17	A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nature Medicine, 2011, 17, 1261-1268.	30.7	192
18	Reporter Phage and Breath Tests: Emerging Phenotypic Assays for Diagnosing Active Tuberculosis, Antibiotic Resistance, and Treatment Efficacy. Journal of Infectious Diseases, 2011, 204, S1142-S1150.	4.0	28

PARAS JAIN

#	Article	IF	CITATIONS
19	Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4. PLoS ONE, 2011, 6, e26750.	2.5	60
20	<i>Mycobacterium tuberculosis</i> Dihydrofolate Reductase Is Not a Target Relevant to the Antitubercular Activity of Isoniazid. Antimicrobial Agents and Chemotherapy, 2010, 54, 3776-3782.	3.2	67
21	Indispensable, Functionally Complementing N and C-terminal Domains Constitute Site-specific Topoisomerase I. Journal of Molecular Biology, 2006, 357, 1409-1421.	4.2	29
22	An atypical type II topoisomerase from Mycobacterium smegmatis with positive supercoiling activity. Molecular Microbiology, 2005, 58, 1392-1405.	2.5	21