A Clay Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10933261/publications.pdf Version: 2024-02-01

Δ CLAY CLADK

#	Article	IF	CITATIONS
1	Resurrection of an ancient inflammatory locus reveals switch to caspase-1 specificity on a caspase-4 scaffold. Journal of Biological Chemistry, 2022, 298, 101931.	3.4	3
2	Remodeling hydrogen bond interactions results in relaxed specificity of Caspase-3. Bioscience Reports, 2021, 41, .	2.4	5
3	Evolution of the folding landscape of effector caspases. Journal of Biological Chemistry, 2021, 297, 101249.	3.4	10
4	Caspases from scleractinian coral show unique regulatory features. Journal of Biological Chemistry, 2020, 295, 14578-14591.	3.4	10
5	Integration of Evolutionary Theory into Cancer Biology and Caspase Signaling. , 2019, , 131-155.		2
6	Resurrection of ancestral effector caspases identifies novel networks for evolution of substrate specificity. Biochemical Journal, 2019, 476, 3475-3492.	3.7	22
7	Modifications to a common phosphorylation network provide individualized control in caspases. Journal of Biological Chemistry, 2018, 293, 5447-5461.	3.4	29
8	The CaspBase: a curated database for evolutionary biochemical studies of caspase functional divergence and ancestral sequence inference. Protein Science, 2018, 27, 1857-1870.	7.6	21
9	Phage display and structural studies reveal plasticity in substrate specificity of caspaseâ€3a from zebrafish. Protein Science, 2016, 25, 2076-2088.	7.6	16
10	Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6080-E6088.	7.1	39
11	Caspase Allostery and Conformational Selection. Chemical Reviews, 2016, 116, 6666-6706.	47.7	67
12	Caspases – Key Players in Apoptosis. , 2015, , 31-51.		3
13	Redesigning the procaspaseâ€8 dimer interface for improved dimerization. Protein Science, 2014, 23, 442-453.	7.6	6
14	Modifying Caspase-3 Activity by Altering Allosteric Networks. Biochemistry, 2014, 53, 7582-7595.	2.5	23
15	Slow Folding and Assembly of a Procaspase-3 Interface Variant. Biochemistry, 2013, 52, 3415-3427.	2.5	6
16	Lengthening the Intersubunit Linker of Procaspase 3 Leads to Constitutive Activation. Biochemistry, 2013, 52, 6219-6231.	2.5	16
17	Allosteric modulation of caspase 3 through mutagenesis. Bioscience Reports, 2012, 32, 401-411.	2.4	24
18	Death by Caspase Dimerization. Advances in Experimental Medicine and Biology, 2012, 747, 55-73.	1.6	87

A CLAY CLARK

#	Article	IF	CITATIONS
19	Thermodynamic, enzymatic and structural effects of removing a salt bridge at the base of loop 4 in (pro)caspase-3. Archives of Biochemistry and Biophysics, 2011, 508, 31-38.	3.0	13
20	A bifunctional allosteric site in the dimer interface of procaspase-3. Biophysical Chemistry, 2011, 159, 100-109.	2.8	24
21	The potential for caspases in drug discovery. Current Opinion in Drug Discovery & Development, 2010, 13, 568-76.	1.9	53
22	Chapter 1 Practical Approaches to Protein Folding and Assembly. Methods in Enzymology, 2009, 455, 1-39.	1.0	75
23	Folding and assembly kinetics of procaspaseâ€3. Protein Science, 2009, 18, 2500-2517.	7.6	14
24	pH effects on the stability and dimerization of procaspase-3. Protein Science, 2009, 14, 24-36.	7.6	27
25	A constitutively active and uninhibitable caspase-3 zymogen efficiently induces apoptosis. Biochemical Journal, 2009, 424, 335-345.	3.7	137
26	Protein folding: Are we there yet?. Archives of Biochemistry and Biophysics, 2008, 469, 1-3.	3.0	15
27	Targeting Cell Death in Tumors by Activating Caspases. Current Cancer Drug Targets, 2008, 8, 98-109.	1.6	95
28	Rapid Folding and Unfolding of Apaf-1 CARD. Journal of Molecular Biology, 2007, 369, 290-304.	4.2	11
29	Substitutions of prolines examine their role in kinetic trap formation of the caspase recruitment domain (CARD) of RICK. Protein Science, 2006, 15, 395-409.	7.6	9
30	Role of Loop Bundle Hydrogen Bonds in the Maturation and Activity of (Pro)caspase-3â€. Biochemistry, 2006, 45, 13249-13263.	2.5	60
31	Novel protein purification system utilizing an N-terminal fusion protein and a caspase-3 cleavable linker. Protein Expression and Purification, 2006, 47, 311-318.	1.3	15
32	Reassembly of Active Caspase-3 Is Facilitated by the Propeptide. Journal of Biological Chemistry, 2005, 280, 39772-39785.	3.4	34
33	Kinetic traps in the folding/unfolding of procaspase-1 CARD domain. Protein Science, 2004, 13, 2196-2206.	7.6	19
34	lonic interactions near the loop L4 are important for maintaining the active-site environment and the dimer stability of (pro)caspase 3. Biochemical Journal, 2004, 384, 515-525.	3.7	18
35	Equilibrium and Kinetic Folding of a α-Helical Greek Key Protein Domain: Caspase Recruitment Domain (CARD) of RICK. Biochemistry, 2003, 42, 6310-6320.	2.5	16
36	An Uncleavable Procaspase-3 Mutant Has a Lower Catalytic Efficiency but an Active Site Similar to That of Mature Caspase-3â€. Biochemistry, 2003, 42, 12298-12310.	2.5	69

A CLAY CLARK

#	Article	IF	CITATIONS
37	Mutations in the Procaspase-3 Dimer Interface Affect the Activity of the Zymogenâ€. Biochemistry, 2003, 42, 12311-12320.	2.5	40
38	Removal of the Pro-Domain Does Not Affect the Conformation of the Procaspase-3 Dimer. Biochemistry, 2001, 40, 14224-14235.	2.5	72
39	Dimeric Procaspase-3 Unfolds via a Four-State Equilibrium Process. Biochemistry, 2001, 40, 14236-14242.	2.5	58
40	Cooperative effects of potassium, magnesium, and magnesiumâ€ADP on the release of <i>Escherichia coli</i> dihydrofolate reductase from the chaperonin GroEL. Protein Science, 1999, 8, 2166-2176.	7.6	9
41	[8] Purification of GroEL with low fluorescence background. Methods in Enzymology, 1998, 290, 100-118.	1.0	34
42	Kinetic Mechanism of Luciferase Subunit Folding and Assemblyâ€. Biochemistry, 1997, 36, 1891-1899.	2.5	40
43	Determination of Regions in the Dihydrofolate Reductase Structure That Interact with the Molecular Chaperonin GroELâ€. Biochemistry, 1996, 35, 5893-5901.	2.5	81