Galina Dvoriantchikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10932865/publications.pdf

Version: 2024-02-01

40 papers 1,779 citations

304743 22 h-index 345221 36 g-index

40 all docs

40 docs citations

40 times ranked

2352 citing authors

#	Article	IF	CITATIONS
1	The Potential Role of Epigenetic Mechanisms in the Development of Retinitis Pigmentosa and Related Photoreceptor Dystrophies. Frontiers in Genetics, 2022, 13, 827274.	2.3	7
2	Derivation and Characterization of Murine and Amphibian MÃ $^1\!\!/\!\!4$ ller Glia Cell Lines. Translational Vision Science and Technology, 2022, 11, 4.	2.2	2
3	Mitochondrial targeted therapy with elamipretide (MTP-131) as an adjunct to tumor necrosis factor inhibition for traumatic optic neuropathy in the acute setting. Experimental Eye Research, 2020, 199, 108178.	2.6	6
4	Mitochondrial lipid profiling data of a traumatic optic neuropathy model. Data in Brief, 2020, 30, 105649.	1.0	3
5	Lipidomics dataset of sonication-induced traumatic optic neuropathy in mice. Data in Brief, 2020, 29, 105147.	1.0	3
6	The effect of extrinsic Wnt/l̂²â€€atenin signaling in Muller glia on retinal ganglion cell neurite growth. Developmental Neurobiology, 2020, 80, 98-110.	3.0	19
7	Development and epigenetic plasticity of murine \tilde{MA} /aller glia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1584-1594.	4.1	18
8	DNA Methylation Dynamics During the Differentiation of Retinal Progenitor Cells Into Retinal Neurons Reveal a Role for the DNA Demethylation Pathway. Frontiers in Molecular Neuroscience, 2019, 12, 182.	2.9	12
9	Wnt signaling induces neurite outgrowth in mouse retinal ganglion cells. Experimental Eye Research, 2019, 182, 39-43.	2.6	11
10	The epigenetic basis for the impaired ability of adult murine retinal pigment epithelium cells to regenerate retinal tissue. Scientific Reports, 2019, 9, 3860.	3.3	24
11	Inflammasome Activation Induces Pyroptosis in the Retina Exposed to Ocular Hypertension Injury. Frontiers in Molecular Neuroscience, 2019, 12, 36.	2.9	69
12	Pannexin 1 sustains the electrophysiological responsiveness of retinal ganglion cells. Scientific Reports, 2018, 8, 5797.	3.3	16
13	Tumor Necrosis Factor Inhibition in the Acute Management of Traumatic Optic Neuropathy. , 2018, 59, 2905.		19
14	A Novel Mouse Model of Traumatic Optic Neuropathy Using External Ultrasound Energy to Achieve Focal, Indirect Optic Nerve Injury. Scientific Reports, 2017, 7, 11779.	3.3	42
15	Mitochondrial DNA Double-Strand Breaks in Oligodendrocytes Cause Demyelination, Axonal Injury, and CNS Inflammation. Journal of Neuroscience, 2017, 37, 10185-10199.	3.6	34
16	Molecular Profiling of the Developing Lacrimal Gland Reveals Putative Role of Notch Signaling in Branching Morphogenesis., 2017, 58, 1098.		15
17	Virally delivered, constitutively active <scp>NF</scp> κB improves survival of injured retinal ganglion cells. European Journal of Neuroscience, 2016, 44, 2935-2943.	2.6	8
18	Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina. PLoS ONE, 2015, 10, e0131054.	2.5	22

#	Article	IF	CITATIONS
19	Cellular Mechanisms of High Mobility Group 1 (HMGB-1) Protein Action in the Diabetic Retinopathy. PLoS ONE, 2014, 9, e87574.	2.5	29
20	Tumor necrosis factorâ€alpha mediates activation of <scp>NF</scp> â€PB and <scp>JNK</scp> signaling cascades in retinal ganglion cells and astrocytes in opposite ways. European Journal of Neuroscience, 2014, 40, 3171-3178.	2.6	59
21	Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia–reperfusion-induced retinal damage. Experimental Eye Research, 2014, 123, 1-7.	2.6	85
22	The <scp>TIR</scp> â€domainâ€containing adapter inducing interferonâ€Î²â€dependent signaling cascade plays a crucial role in ischemia–reperfusionâ€induced retinal injury, whereas the contribution of the myeloid differentiation primary response 88â€dependent signaling cascade is not as pivotal. European Journal of Neuroscience, 2014, 40, 2502-2512.		16
23	Putative role of protein kinase C in neurotoxic inflammation mediated by extracellular heat shock protein 70 after ischemia-reperfusion. Journal of Neuroinflammation, 2014, 11, 81.	7.2	39
24	Transgenic inhibition of astroglial NF-ÎB protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis. Journal of Neuroinflammation, 2012, 9, 213.	7.2	81
25	Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury. PLoS ONE, 2012, 7, e31991.	2.5	109
26	Neuronal NAD(P)H Oxidases Contribute to ROS Production and Mediate RGC Death after Ischemia. , 2012, 53 , 2823 .		50
27	Astroglial NF‵B mediates oxidative stress by regulation of NADPH oxidase in a model of retinal ischemia reperfusion injury. Journal of Neurochemistry, 2012, 120, 586-597.	3.9	35
28	Pannexin1 Stabilizes Synaptic Plasticity and Is Needed for Learning. PLoS ONE, 2012, 7, e51767.	2.5	121
29	The High-Mobility Group Box-1 Nuclear Factor Mediates Retinal Injury after Ischemia Reperfusion. , 2011, 52, 7187.		56
30	Preliminary quantitative proteomic characterization of glaucomatous rat retinal ganglion cells. Experimental Eye Research, 2010, 91, 107-110.	2.6	25
31	Toll-like receptor 4 contributes to retinal ischemia/reperfusion injury. Molecular Vision, 2010, 16, 1907-12.	1.1	60
32	Liposome-delivered ATP effectively protects the retina against ischemia-reperfusion injury. Molecular Vision, 2010, 16, 2882-90.	1.1	43
33	Transgenic Inhibition of Astroglial NF-κB Improves Functional Outcome in Experimental Autoimmune Encephalomyelitis by Suppressing Chronic Central Nervous System Inflammation. Journal of Immunology, 2009, 182, 2628-2640.	0.8	229
34	Phosphatidylserine-Containing Liposomes Promote Maximal Survival of Retinal Neurons after Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1755-1759.	4.3	40
35	Inactivation of astroglial NFâ€̂ºB promotes survival of retinal neurons following ischemic injury. European Journal of Neuroscience, 2009, 30, 175-185.	2.6	135
36	Differential gene expression profiling of large and small retinal ganglion cells. Journal of Neuroscience Methods, 2008, 174, 10-17.	2.5	28

#	Article	IF	CITATIONS
37	Microarray analysis of gene expression in adult retinal ganglion cells. FEBS Letters, 2006, 580, 331-335.	2.8	60
38	Expression of pannexin family of proteins in the retina. FEBS Letters, 2006, 580, 2178-2182.	2.8	96
39	Molecular characterization of pannexins in the lens. Molecular Vision, 2006, 12, 1417-26.	1.1	24
40	Microarray analysis of fiber cell maturation in the lens. FEBS Letters, 2005, 579, 1213-1219.	2.8	29