
Javier CatalÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1093191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP,) Tj ETQq1 1	0.78431 2.6	4 rgBT /Ove 581
-	Chemistry B, 2009, 113, 5951-5960.	2.0	001
2	Photoinduced intramolecular proton transfer as the mechanism of ultraviolet stabilizers: a reappraisal. Journal of the American Chemical Society, 1990, 112, 747-759.	13.7	198
3	Basicity and Acidity of Azoles. Advances in Heterocyclic Chemistry, 1987, , 187-274.	1.7	187
4	Progress towards a generalized solvent polarity scale: The solvatochromism of 2â€(dimethylamino)â€7â€nitrofluorene and its homomorph 2â€fluoroâ€7â€nitrofluorene. Liebigs Annalen, 1995, 1995, 241-252.	0.8	187
5	Characterization of Binary Solvent Mixtures of DMSO with Water and Other Cosolvents. Journal of Organic Chemistry, 2001, 66, 5846-5852.	3.2	183
6	A Generalized Solvent Basicity Scale: The Solvatochromism of 5â€Nitroindoline and Its Homomorph 1â€Methylâ€5â€nitroindoline. Liebigs Annalen, 1996, 1996, 1785-1794.	0.8	174
7	A Generalized Solvent Acidity Scale: The Solvatochromism of <i>oâ€tert</i> â€Butylstilbazolium Betaine Dye and Its Homomorph <i>o</i> , <i>o</i> ′â€Diâ€ <i>tert</i> â€butylstilbazolium Betaine Dye. Liebigs Annalen, 1997, 1997, 1941-1949.	0.8	144
8	Empirical Treatment of the Inductive and Dispersive Components of Soluteâ^'Solvent Interactions: The Solvent Polarizability (SP) Scale. European Journal of Organic Chemistry, 2004, 2004, 4694-4702.	2.4	140
9	New ultraviolet stabilizers: 3- and 5-(2'-hydroxyphenyl)pyrazoles. Journal of the American Chemical Society, 1992, 114, 5039-5048.	13.7	139
10	Basicity and acidity of azoles: the annelation effect in azoles. Journal of the American Chemical Society, 1988, 110, 4105-4111.	13.7	127
11	Electrostatic proximity effects in the relative basicities and acidities of pyrazole, imidazole, pyridazine, and pyrimidine. Journal of the American Chemical Society, 1986, 108, 3237-3239.	13.7	120
12	Tautomerism and aromaticity in 1,2,3-triazoles: the case of benzotriazole. Journal of the American Chemical Society, 1989, 111, 7348-7353.	13.7	119
13	Analysis of the solvent effect on the photophysics properties of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN). Journal of Fluorescence, 1991, 1, 215-223.	2.5	107
14	Fluorescence of fullerenes (C60 and C70). Journal of the American Chemical Society, 1993, 115, 9249-9252.	13.7	105
15	Toward the photostability mechanism of intramolecular hydrogen bond systems. The photophysics of 1'-hydroxy-2'-acetonaphthone. Journal of the American Chemical Society, 1993, 115, 4321-4325.	13.7	101
16	Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes. Photochemical and Photobiological Sciences, 2010, 9, 996-1008.	2.9	100
17	Kasha's rule: a reappraisal. Physical Chemistry Chemical Physics, 2019, 21, 10061-10069.	2.8	97
18	Photophysics of 7-Azaindole, Its Doubly-H-Bonded Base-Pair, and Corresponding Proton-Transfer-Tautomer Dimeric Species, via Defining Experimental and Theoretical Results. Journal of Physical Chemistry A, 2000, 104, 10812-10820.	2.5	86

#	Article	IF	CITATIONS
19	Extending the Solvent Acidiy Scale to Highly Acidic Organic Solvents: The Unique Photophysical Behaviour of 3,6-Diethyltetrazine. European Journal of Organic Chemistry, 1999, 1999, 885-891.	2.4	74
20	Toward a solvent basicity scale: the calorimetry of the pyrrole probe. Journal of the American Chemical Society, 1990, 112, 1678-1681.	13.7	72
21	Influence of Lone Pair Repulsion vs Resonance Energy on the Relative Stabilities of Molecular Structures: A Theoretical Approach to the Equilibrium between 1H- and 2H-Benzotriazole Tautomers. Journal of Organic Chemistry, 1994, 59, 2799-2802.	3.2	69
22	Acidity and Basicity of Indazole and its N-Methyl Derivatives in the Ground and in the Excited State. The Journal of Physical Chemistry, 1994, 98, 10606-10612.	2.9	68
23	The Six-Membered Intramolecular Hydrogen Bond Position as a Switch for Inducing an Excited State Intramolecular Proton Transfer (ESIPT) in Esters ofo-Hydroxynaphthoic Acids. Journal of Physical Chemistry A, 1999, 103, 10921-10934.	2.5	68
24	On the Molecular Structure and UV/vis Spectroscopic Properties of the Solvatochromic and Thermochromic Pyridinium- <i>N</i> -Phenolate Betaine Dye B30. Journal of Physical Chemistry A, 2010, 114, 6226-6234.	2.5	64
25	Solvent dipolarity/polarizability (SPP) of alcoholic solvents. Liebigs Annalen, 1995, 1995, 793-795.	0.8	62
26	Experimental and theoretical study of the R3P+-X- bond. Case of betaines derived from N-iminophosphoranes and alkyl isocyanates. Journal of the American Chemical Society, 1989, 111, 355-363.	13.7	58
27	The role of the torsion of the phenyl moiety in the mechanism of stimulated ultraviolet light generation in 2â€phenylbenzazoles. Journal of Chemical Physics, 1992, 96, 2005-2016.	3.0	58
28	The concerted mechanism of photo-induced biprotonic transfer in 7-azaindole dimers: A model for the secondary evolution of the classic C2h dimer and comparison of four mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5799-5803.	7.1	56
29	Importance of aromaticity on the relative stabilities of indazole annular tautomers: an ab initio study. Journal of the Chemical Society Perkin Transactions II, 1996, , 57-60.	0.9	55
30	The concerted mechanism of photo-induced biprotonic transfer in 7-azaindole dimers: Structure, quantum-theoretical analysis, and simultaneity principles. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5793-5798.	7.1	54
31	The tautomerism of 1,2,3-triazole, 3(5)-methylpyrazole and their cations. Journal of Computational Chemistry, 1989, 10, 426-433.	3.3	51
32	Solvatochromism of fluorophores with an intramolecular hydrogen bond and their use as probes in biomolecular cavity sites. International Journal of Quantum Chemistry, 1999, 72, 421-438.	2.0	51
33	Conformity of the 7-azaindole dimer cationic potential with photoionization/Coulomb-explosion MS observations and the concerted biprotonic transfer mechanism. Chemical Physics Letters, 2000, 318, 629-636.	2.6	51
34	Polarizability effects on the aqueous solution basicity of substituted pyridines. Journal of Organic Chemistry, 1988, 53, 1137-1140.	3.2	48
35	THE INFLUENCE OF MOLECULAR CONFORMATION ON THE STABILITY OF ULTRAVIOLET STABILIZERS TOWARD DIRECT AND DYE-SENSITIZED PHOTOIRRADIATION: THE CASE OF 2-(2'-HYDROXY-5'-METHYPHENYL)BENZOTRIAZOLE (TIN P). Photochemistry and Photobiology, 1995, 61, 118-123.	2.5	48
36	The Colors of C60 Solutions. Angewandte Chemie International Edition in English, 1995, 34, 105-107.	4.4	47

#	Article	IF	CITATIONS
07	N-aminoazoles. Part 2. Basicity and protonation site of N-aminoazoles: an experimental (pKa,13C and15N) Tj ETQ		0
37	Transactions II, 1993, , 1687-1699.	0.9	46
38	Experimental (13C and15N NMR spectroscopy) and theoretical (6-31G) study of the protonation of N-methylazoles andN-methylbenzazoles. Magnetic Resonance in Chemistry, 1993, 31, 791-800.	1.9	45
39	Spectroscopy of Amplified Spontaneous Emission Laser Spikes in Phenyloxazoles. Prototype Classes. Journal of Physical Chemistry A, 1997, 101, 3260-3272.	2.5	45
40	Structure of benzotriazole in the gas phase: a UV experimental study. Journal of Organic Chemistry, 1993, 58, 5276-5277.	3.2	44
41	Medium-Controlled Aggregation of trans-Stilbene. Journal of the American Chemical Society, 2000, 122, 2377-2378.	13.7	43
42	The singular coincidence of fluorescence spectra of the anionic and cationic species formed by the respective deprotonated and protonated pyrido-pyrrolo bases. International Journal of Quantum Chemistry, 2000, 77, 118-127.	2.0	41
43	The structure of N-aminoazoles: an experimental (X-ray and15N NMR) and theoretical study. Journal of the Chemical Society Perkin Transactions II, 1990, , 237-244.	0.9	40
44	Characterization of binary solvent mixtures: the water–acetonitrile mixture. Organic and Biomolecular Chemistry, 2003, 1, 575-580.	2.8	37
45	Photophysical properties of some 2-(2'-hydroxyaryl)benzotriazoles: dramatic effect of an ortho-located bulky tert-butyl group. Journal of the American Chemical Society, 1992, 114, 964-966.	13.7	36
46	Basicity of azoles. Part 2. Theoretical study of the basicity of methylpyrazoles and methylimidazoles. Journal of the Chemical Society Perkin Transactions II, 1983, , 1869-1874.	0.9	35
47	Effect of the replacement of a methyl by a trifluoromethyl group on the acid-base properties of pyrazoles. Journal of Organic Chemistry, 1991, 56, 3942-3947.	3.2	35
48	An AB initio comparative study of the electronic properties of sulfonamides and amides. Computational and Theoretical Chemistry, 1989, 184, 115-129.	1.5	34
49	On the dual emission of p-dimethylaminobenzonitrile and its photophysical implications. Physical Chemistry Chemical Physics, 2013, 15, 8811.	2.8	34
50	A theoretical study of the stereochemistry of the intramolecular hydrogen bond of salicylic acid. Journal of Molecular Structure, 1975, 27, 59-65.	3.6	33
51	Inter-ring Torsional Modulation in Molecular Lasers. Ultraviolet Lasing via Amplified Spontaneous Emission Spectroscopy of Phenylimidazoles. Journal of Physical Chemistry A, 1997, 101, 5284-5291.	2.5	33
52	Analysis of mixed solvent effects on the properties of singlet oxygen (). Chemical Physics, 2004, 300, 33-39.	1.9	32
53	Thermodynamic basicity vs. kinetic basicity of diazoles (imidazoles and pyrazoles). Journal of Organic Chemistry, 1991, 56, 179-183.	3.2	31
54	The molecular symmetry and electronic spectroscopy of 7-azaindole dimer: Its proton-transfer channels Journal of Chemical Physics, 2005, 123, 114302	3.0	31

#	Article	IF	CITATIONS
55	On the solvatochromism of the n ↔π* electronic transitions in ketones. Physical Chemistry Chemical Physics, 2011, 13, 4072.	2.8	31
56	Analysis of the Solvatochromism of 9,9′-Biaryl Compounds Using a Pure Solvent Dipolarity Scale. Journal of Physical Chemistry A, 2012, 116, 4726-4734.	2.5	30
57	On the photophysics of all-trans polyenes: Hexatriene versus octatetraene. Journal of Chemical Physics, 2006, 124, 034306.	3.0	28
58	On the Origin of Nonvertical Triplet Excitation Transfer:Â The Relative Role of Double-Bond and Phenyl-Vinyl Torsions in the Stilbenes. Journal of Physical Chemistry A, 2001, 105, 6273-6276.	2.5	27
59	Theoretical study of the intramolecular hydrogen bonding in benzene derivatives. Advances in Molecular Relaxation and Interaction Processes, 1978, 12, 265-287.	0.5	25
60	2-Arylperimidine derivatives. Part 1. Synthesis, NMR spectroscopy, X-ray crystal and molecular structures. Journal of the Chemical Society Perkin Transactions II, 1995, , 1389-1398.	0.9	25
61	Basicity of azoles. IV. Empirical relationships between basicity and ionization potential for aromatic five membered rings containing nitrogen or oxygen. Journal of Heterocyclic Chemistry, 1984, 21, 269-270.	2.6	24
62	Basicity of azoles. VII. Basicity of <i>C</i> â€aminopyrazoles in relation to tautomeric and protonation studies. Journal of Heterocyclic Chemistry, 1985, 22, 997-1000.	2.6	24
63	On the Inoperativeness of the ESIPT Process in the Emission of 1-Hydroxy-2-acetonaphthone:  A Reappraisal. Journal of Physical Chemistry A, 2008, 112, 904-914.	2.5	24
64	Towards a solvent acidity scale: the calorimetry of the N-methyl imidazole probe. Journal of the Chemical Society Perkin Transactions II, 1992, , 1181-1185.	0.9	23
65	Correlation of Solvolysis Rates 50 Years Later. Journal of Organic Chemistry, 1999, 64, 6512-6514.	3.2	23
66	First reported evidence that solvent polarity induces an ↔ inversion in the indole chromophore. Chemical Physics Letters, 2003, 368, 717-723.	2.6	23
67	Do stilbazolium betaine dyes exhibit inverted solvatochromism by changes in solvent dipolarity?. Dyes and Pigments, 2012, 95, 180-187.	3.7	23
68	DFT study of ionization potentials for aza-substituted aromatic rings. International Journal of Quantum Chemistry, 2003, 91, 432-437.	2.0	22
69	Excited State Proton Transfer in 3-Methyl-7-Azaindole Dimer. Symmetry Control. Journal of Physical Chemistry A, 2006, 110, 9116-9122.	2.5	21
70	Toward the Photostability Mechanism of Intramolecular Hydrogen Bond Systems. 4. 3(5)-(1'-Hydroxy-2'-naphthyl)pyrazoles and 3(5)-(2'-Hydroxy-1'-naphthyl)pyrazoles. Journal of Organic Chemistry, 1995, 60, 3427-3439.	3.2	20
71	Prediction of proton affinities and protonation sites using a multivariate linear correlation. Journal of the Chemical Society Perkin Transactions II, 1982, , 1409-1418.	0.9	18
72	Solvatochromism of Sterically Hindered Stilbazolium Betaines and Its Relationship to Reichardt's <i>E</i> _T (30) Scale: The Problem of the Measurement of the Polarity vs the Acidity of Alcohols. Chemische Berichte, 1993, 126, 2445-2448.	0.2	18

#	Article	IF	CITATIONS
73	Molecular structure distortions and the Mulliken–Rieke rule: The case of t-stilbene. Chemical Physics Letters, 2005, 416, 165-170.	2.6	17
74	The Relative Basicities of Imidazole and Benzimidazole. Angewandte Chemie International Edition in English, 1983, 22, 323-324.	4.4	16
75	A Spectroscopic Rule from the Solvatochromism of Aromatic Solutes in Nonpolar Solvents. Journal of Physical Chemistry B, 2014, 118, 5168-5176.	2.6	16
76	Prediction of proton affinities and preferred protonation sites in benzene derivatives, from 1s orbital energies. Journal of the Chemical Society Perkin Transactions II, 1979, , 1627-1631.	0.9	15
77	Calorimetric quantification of the hydrogen-bond acidity of solvents and its relationship with solvent polarity. Journal of the Chemical Society Perkin Transactions II, 1995, , 2301-2305.	0.9	15
78	Gas-phase protolysis between a neutral BrÃ,nsted acid and a neutral BrÃ,nsted base?. Chemical Physics Letters, 1998, 293, 511-514.	2.6	15
79	Electronic Energy Levels in all-trans Long Linear Polyenes: The Case of the 3,20-Di(tert-butyl)-2,2,21,21-tetramethyl-all-trans-3,5,7,9,11,13,15,17,19-docosanonaen (ttbp9) Conforming to Kasha's Rule. Chemistry - A European Journal, 2005, 11, 3915-3920.	3.3	15
80	On the Photophysics of Polyenes. 1. Bathochromic Shifts in Their 1Ag → 1Bu Electronic Transitions Caused by the Polarizability of the Medium. Journal of Physical Chemistry A, 2008, 112, 5653-5657.	2.5	15
81	On the fluorescence of methyl salicylate: the significance of its IMHB. Physical Chemistry Chemical Physics, 2012, 14, 8903.	2.8	15
82	Proton transfer in salicylic acid excited states. Human Development, 1976, 8, 87-94.	0.8	14
83	Understanding the solvatochromism of 10-hydroxybenzo[h]quinoline. An appraisal of a polarity calibrator. Chemical Physics, 2001, 270, 1-12.	1.9	14
84	Excited-state proton phototransfer in the (3-methyl-7-azaindole)-(7-azaindole) heterodimer. Chemical Physics Letters, 2006, 419, 164-167.	2.6	14
85	Photophysics of 1-Azacarbazole Dimers:  A Reappraisal. Journal of Physical Chemistry A, 2007, 111, 8774-8779.	2.5	14
86	Fluorescence Spectroscopy and Amplified Spontaneous Emission (ASE) of Phenylimidazoles: Predicted Vibronic Coupling Along the Excited-State Intramolecular Proton Transfer in 2-(2â€2-Hydroxyphenyl)imidazoles. Journal of Physical Chemistry A, 2008, 112, 5555-5565.	2.5	14
87	Activation Energy of the Two-Proton Phototautomerism in 7-Azaindole Dimer and Its Medium-Dependence. Journal of Physical Chemistry A, 2010, 114, 5666-5673.	2.5	14
88	Study of 7-azaindole in its first four singlet states. Journal of Chemical Physics, 2005, 122, 244320.	3.0	13
89	Can the dipolarity of the medium induce the formation of charge transfer structures? An unexpected finding in the photophysics of DMABN. Physical Chemistry Chemical Physics, 2014, 16, 7734.	2.8	13
90	Intrinsic acidities of meta- and para-substituted phenols from calculated molecular properties. Journal of the Chemical Society Perkin Transactions II, 1979, , 1632-1636.	0.9	12

#	Article	lF	CITATIONS
91	On the concerted mechanism of photo-induced biprotonic transfer in <i>C</i> _{2h} 7-azaindole dimer. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E78; author reply E79.	7.1	12
92	The first UV absorption band of <scp>l</scp> -tryptophan is not due to two simultaneous orthogonal electronic transitions differing in the dipole moment. Physical Chemistry Chemical Physics, 2016, 18, 15170-15176.	2.8	12
93	Liquid water changes its structure at 43 °C. Chemical Physics Letters, 2017, 679, 86-89.	2.6	12
94	Calorimetric study of the effect ofN-methylation in azoles: Loss of an active centre of solvation. Journal of Physical Organic Chemistry, 1989, 2, 646-652.	1.9	11
95	Chemical physics of excitation dynamics via amplified spontaneous emission (ASE) laser spike spectroscopy in substituted phenyloxazoles. Chemical Physics Letters, 1996, 263, 154-160.	2.6	11
96	Inversion of the 1 ¹ B _u and 2 ¹ A _g electronic states of all-trans-1,6-diphenyl-1,3,5-hexatriene in carbon disulfide. Physical Chemistry Chemical Physics, 2017, 19, 27099-27104.	2.8	11
97	On the hydrophobic effect in water–alcohol mixtures. Chemical Physics, 2019, 527, 110467.	1.9	11
98	Comments on "Quantifying solvent effects through QSPR: A new look over different model equations― Journal of Molecular Liquids, 2020, 298, 111922.	4.9	11
99	Photophysics of the 2-(2′-hydroxyphenyl)perimidines: Photostability studies. Journal of Luminescence, 1997, 75, 17-26.	3.1	10
100	New contributions to the photophysical model for all- <i>trans</i> -polyenesfrom ttbP4, a nonphotolabile octatetraene. Journal of Chemical Physics, 2008, 128, 104504.	3.0	10
101	Compounds with Ï€(<i>loc</i>) → ï€*(<i>deloc</i>) electronic transitions and their solvatochromism. Journal of Physical Organic Chemistry, 2015, 28, 497-503.	1.9	10
102	On the TICT Mechanism of 9,9′-Biaryl Compounds. European Journal of Organic Chemistry, 1998, 1998, 1697-1704.	2.4	9
103	On the absorption and emission spectra for the purine chromophore in weakly perturbative environments. Chemical Physics, 2004, 303, 205-218.	1.9	9
104	The emission of α,ω-diphenylpolyenes: A model involving several molecular structures. Chemical Physics, 2007, 335, 69-78.	1.9	9
105	Solvation by Glycerol at Temperatures from 353 to 77 K: Its Solvatochromic Characterization and Use to Block the Molecular Structure of Conformationally Flexible Structures. Journal of Physical Chemistry A, 2017, 121, 7114-7120.	2.5	9
106	On the first electronic transitions in molecular spectra of conjugated diphenylpolyenes: A reappraisal. Chemical Physics, 2019, 525, 110422.	1.9	9
107	On the chromism of polyenes. Chemical Physics Letters, 2008, 457, 87-90.	2.6	8
108	Questioning the photophysical model for the indole chromophore in the light of evidence obtained by controlling the non-specific effect of the medium with 1-chlorobutane as solvent. Physical Chemistry Chemical Physics, 2011, 13, 15022.	2.8	8

#	Article	IF	CITATIONS
109	Spectroscopy of 1,6-diphenyl-1,3,5-hexatriene (DPH) dissolved in three hexane structural isomers, and its consequences on the photophysical model of polyenes. Physical Chemistry Chemical Physics, 2017, 19, 10657-10662.	2.8	8
110	On the empirical scales of organic solvents established using probe/homomorph pairs. Journal of Physical Organic Chemistry, 2021, 34, e4206.	1.9	8
111	SOLVENT EFFECTS BASED ON PURE SOLVENT SCALES. , 2014, , 581-622.		7
112	The first UV absorption band for indole is not due to two simultaneous orthogonal electronic transitions differing in dipole moment. Physical Chemistry Chemical Physics, 2015, 17, 12515-12520.	2.8	7
113	On the photophysical model for polyenes: Experimental evidence of the 1,8â€diphenyloctaâ€1,3,5,7â€tetraene molecule dissolved in <i>n</i> â€octane, cyclooctane, and 2,2,4â€trimethylpentane. Journal of Physical Organic Chemistry, 2018, 31, e3794.	1.9	7
114	Photophysical Study of Pyridoxal 5'-Phosphate and Its Schiff Base with n-Hexylamine. Photochemistry and Photobiology, 1997, 66, 810-816.	2.5	6
115	The photophysics of all- <i>trans</i> polyenes from ttbP5, a nonphotolabile pentaene. Journal of Chemical Physics, 2008, 129, 014505.	3.0	6
116	Proton Phototransfers in Doubly Hydrogen Bonded Dimers: The Photophysics of 6,7,8,9-Tetrahydro-5 <i>H</i> -pyrido[2,3- <i>b</i>]indole Dimers. Journal of Physical Chemistry A, 2010, 114, 811-816.	2.5	6
117	On the use of βâ€carotene as a probe for solvent polarizability. Journal of Physical Organic Chemistry, 2013, 26, 948-952.	1.9	6
118	Fluorosolvatochromism of monomethyl indoles: further evidence in support of a new photophysical model for the indole chromophore. Journal of Physical Organic Chemistry, 2015, 28, 329-336.	1.9	6
119	On Saltiel's isopolarizability approach and its applicability to diphenylpolyenes. Chemical Physics Letters, 2015, 635, 56-59.	2.6	6
120	Molecule 1-Methyl-5-nitroindoline Probes the Structural Change of Liquid Water with Temperature. ACS Omega, 2018, 3, 18930-18934.	3.5	6
121	Solvatochromism in urea/water and urea-derivative/water solutions. Physical Chemistry Chemical Physics, 2020, 22, 25165-25176.	2.8	6
122	Effect ofN-methylation on the conformation of 2-phenylbenzimidazole, 2-phenylindole and three related rotationally constrained indoles. Magnetic Resonance in Chemistry, 1992, 30, 800-802.	1.9	5
123	Polarization of the T1→S0 phosphorescence and S0→Sn phosphorescence excitation of aromatic hydrocarbons prototype for ï€,ï€* states. A reappraisal. Chemical Physics, 2005, 316, 253-259.	1.9	5
124	On the molecular conformation of bisaromatic systems the case of 2-phenyl-2H-benzotriazoles. Chemical Physics, 2007, 340, 32-42.	1.9	5
125	Reply to the comment on "On the dual emission of p-dimethylaminobenzonitrile and its photophysical implications―by J. Catalán, Phys. Chem. Chem. Phys., 2013, 15, 8811–8820. Physical Chemistry Chemical Physics, 2013, 15, 16978.	2.8	5
126	Is the LE→TICT process in the S1 excited state of 9,9′-bisanthracenyl influenced by the viscosity or the dipolarity of the solvent?. Journal of Luminescence, 2013, 143, 635-639.	3.1	4

#	Article	IF	CITATIONS
127	On the photoâ€activation of the S 0 Â→ÂS 1 transition in polyenes. Journal of Physical Organic Chemistry, 2019, 32, e3933.	1.9	4
128	Solvatochromic correlation analysis of monomolecular SN1/E1 heterolysis reactions of tertiary haloalkanes. Journal of Molecular Liquids, 2021, 324, 114699.	4.9	4
129	On the temperatureâ€dependent isomerization of all― <i>trans</i> â€1,6â€diphenylâ€1,3,5â€hexatriene in solut A reappraisal. Journal of Physical Organic Chemistry, 0, , .	tion: 1.9	4
130	On the first triplet state of benzotriazole-like ultraviolet stabilizers. Chemical Physics Letters, 1998, 297, 549-552.	2.6	3
131	ON THE ABSORPTION SPECTRUM OF C60IN THE VISIBLE SPECTRAL REGION. Fullerenes Nanotubes and Carbon Nanostructures, 2002, 10, 171-180.	2.1	3
132	Photophysics of the 6 <i>H</i> -Indolo[2,3- <i>b</i>]quinoline Molecule: The Excited-State Double-Proton-Transfer Process in Perspective. Journal of Physical Chemistry A, 2011, 115, 1900-1907.	2.5	3
133	Existence of Two Fluorescence Bands in <i>all</i> - <i>trans</i> Polyenes with Six and Seven Double Bonds. Journal of Physical Chemistry A, 2018, 122, 6391-6395.	2.5	3
134	On the dual fluorescence of α,ωâ€diphenylpolyenes from five to seven polyene double bonds. Journal of Physical Organic Chemistry, 2019, 32, e3906.	1.9	3
135	On the mirror symmetry between the absorption and emission of complex molecules in solution. Journal of Physical Organic Chemistry, 2020, 33, e4034.	1.9	3
136	Interaction of formamide with stilbazolium betaines: Steric effects in amides. Journal of Physical Organic Chemistry, 1992, 5, 609-613.	1.9	2
137	Über die relative Basizitävon Imidazol und Benzimidazol. Angewandte Chemie, 1983, 95, 323-324.	2.0	2
138	On the dimerization of unsubstituted α,ω-diphenylpolyenes at low concentrations in inert solvents. Journal of Physical Organic Chemistry, 2016, 29, 414-420.	1.9	2
139	Influence of solvent basicity on DMABN photophysics. Journal of Physical Organic Chemistry, 2017, 30, e3613.	1.9	2
140	On the photophysics of a polyene dissolved in n â€alkanes when the temperature drops from 293 to 77 K. Journal of Physical Organic Chemistry, 2020, 33, e4097.	1.9	2
141	Carbon disulfide solvent, helping to clarify the Stokes shift in diphenylpolyenes. Journal of Physical Organic Chemistry, 2021, 34, e4147.	1.9	2
142	On the relative basicities of imidazole and benzimidazole. Angewandte Chemie International Edition in English, 1983, 22, 411-418.	4.4	1
143	Lone-pair charges and structural effects. Journal of Physical Organic Chemistry, 1990, 3, 255-259.	1.9	1
144	Correction. Toward the Photostability Mechanism of Intramolecular Hydrogen Bond Systems. The Photophysics of 1'-Hydroxy-2'-acetonaphthone. Journal of the American Chemical Society, 1993, 115, 8519-8519.	13.7	1

#	Article	IF	CITATIONS
145	On dimers and complexes of tetracene and the Kasha's molecular excitonic model. Journal of Physical Organic Chemistry, 2014, 27, 456-462.	1.9	1
146	Reply to the comment on "On Saltiel's isopolarizability approach and its applicability to diphenylpolyenes―by J. Catalán, Chem. Phys. Lett. 635 (2015) 56. Chemical Physics Letters, 2015, 641, 104-105.	2.6	1
147	Thermochromism of pure alkanols and water versus its polarizability. Chemical Physics, 2019, 522, 99-103.	1.9	1
148	On the solvatochromism, dimerization and tautomerism of indazole. Arkivoc, 2014, 2014, 57-70.	0.5	1
149	On the Doubly hydrogen bonded dimer of 7-azaindole (0.1 M) as a model for DNA base pairs in acetonitrile solutions at rt. Nature Precedings, 2008, , .	0.1	0
150	On the 7-azaindole in acetonitrile anhydrous solutions as an inappropriate photophysical model for DNA base pairs. Nature Precedings, 2009, , .	0.1	0
151	Photophysics of the electronic states S 0 and S 1 for the coplanar molecular structures of the α,ï‰â€diphenylpolyenes DPH and DPO. Journal of Physical Organic Chemistry, 2021, 34, e4256.	1.9	0
152	Absorption to and emission from the excited electronic state 1 1 Bu in long linear all―trans â€polyenes: The case of ttbP9 and ttbP11. Journal of Physical Organic Chemistry, 0, , e4292.	1.9	0