Anne-Catherine Schmit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10931670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GIP1 and GIP2 Contribute to the Maintenance of Genome Stability at the Nuclear Periphery. Frontiers in Plant Science, 2021, 12, 804928.	3.6	4
2	The wheat TdRL1 is the functional homolog of the rice RSS1 and promotes plant salt stress tolerance. Plant Cell Reports, 2018, 37, 1625-1637.	5.6	3
3	<i>MGO3</i> and <i>GIP1</i> act synergistically for the maintenance of centromeric cohesion. Nucleus, 2017, 8, 98-105.	2.2	7
4	Centromeric chromatin and its dynamics in plants. Plant Journal, 2015, 83, 4-17.	5.7	46
5	<i>Arabidopsis</i> MZT1 homologs GIP1 and GIP2 are essential for centromere architecture. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8656-8660.	7.1	49
6	GIP/MZT1 proteins: Key players in centromere regulation. Cell Cycle, 2015, 14, 3665-3666.	2.6	5
7	GIP/MZT1 proteins orchestrate nuclear shaping. Frontiers in Plant Science, 2014, 5, 29.	3.6	18
8	Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. Plant Journal, 2013, 75, 245-257.	5.7	38
9	The CIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana. Frontiers in Plant Science, 2013, 4, 480.	3.6	51
10	The GCP3-Interacting Proteins GIP1 and GIP2 Are Required for γ-Tubulin Complex Protein Localization, Spindle Integrity, and Chromosomal Stability. Plant Cell, 2012, 24, 1171-1187.	6.6	89
11	Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. New Phytologist, 2012, 194, 353-363.	7.3	57
12	Plant TPX2 and related proteins. Plant Signaling and Behavior, 2009, 4, 69-72.	2.4	22
13	Dual functions of <i>Nicotiana benthamiana</i> Rae1 in interphase and mitosis. Plant Journal, 2009, 59, 278-291.	5.7	56
14	Identification of a novel small <i>Arabidopsis</i> protein interacting with gammaâ€ŧubulin complex protein 3. Cell Biology International, 2008, 32, 546-548.	3.0	31
15	Microtubules and the Evolution of Mitosis. , 2008, , 233-266.		13
16	The Plant TPX2 Protein Regulates Prospindle Assembly before Nuclear Envelope Breakdown. Plant Cell, 2008, 20, 2783-2797.	6.6	102
17	Plant Gamma-Tusc-Like Components: Their Role In Microtubule Nucleation. NATO Science for Peace and Security Series C: Environmental Security, 2008, , 3-22.	0.2	1
18	QQT proteins colocalize with microtubules and are essential for early embryo development in Arabidopsis. Plant Journal, 2007, 50, 615-626.	5.7	22

ANNE-CATHERINE SCHMIT

#	Article	IF	CITATIONS
19	Arabidopsis GCP2 and GCP3 are part of a soluble γâ€ŧubulin complex and have nuclear envelope targeting domains. Plant Journal, 2007, 52, 322-331.	5.7	77
20	Î ³ -Tubulin Is Essential for Microtubule Organization and Development in Arabidopsis. Plant Cell, 2006, 18, 1412-1425.	6.6	156
21	Expression of a Nondegradable Cyclin B1 Affects Plant Development and Leads to Endomitosis by Inhibiting the Formation of a Phragmoplast. Plant Cell, 2004, 16, 643-657.	6.6	121
22	Molecular Mechanisms of Microtubule Nucleation in Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, 2004, , 66-80.	0.2	0
23	Multiple microtubule nucleation sites in higher plants. Cell Biology International, 2003, 27, 267-269.	3.0	12
24	Acentrosomal microtubule nucleation in higher plants. International Review of Cytology, 2002, 220, 257-289.	6.2	72
25	The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. Journal of Cell Science, 2002, 115, 2423-2431.	2.0	124
26	The plant Spc98p homologue colocalizes with gamma-tubulin at microtubule nucleation sites and is required for microtubule nucleation. Journal of Cell Science, 2002, 115, 2423-31.	2.0	107
27	Higher plant cells: Gamma-tubulin and microtubule nucleation in the absence of centrosomes. , 2000, 49, 487-495.		50
28	Actin During Mitosis and Cytokinesis. , 2000, , 437-456.		6
29	The growing cell plate of higher plants is a site of both actin assembly and vinculin-like antigen recruitment. European Journal of Cell Biology, 1998, 77, 10-18.	3.6	44
30	The perinuclear microtubule-organizing center and the synaptonemal complex of higher plants share a common antigen: its putative transfer and role in meiotic chromosomal ordering. Chromosoma, 1996, 104, 405-413.	2.2	25
31	Isolated Plant Nuclei Nucleate Microtubule Assembly: The Nuclear Surface in Higher Plants Has Centrosome-Like Activity. Plant Cell, 1994, 6, 1099.	6.6	27
32	Cell cycle dependent distribution of a centrosomal antigen at the perinuclear MTOC or at the kinetochores of higher plant cells. Chromosoma, 1994, 103, 343-351.	2.2	37
33	Microinjected Fluorescent Phalloidin in vivo Reveals the F-Actin Dynamics and Assembly in Higher Plant Mitotic Cells. Plant Cell, 1990, 2, 129.	6.6	19
34	Plant actin filament and microtubule interactions during anaphase-telophase transition: effects of antagonist drugs. Biology of the Cell, 1988, 64, 309-319.	2.0	54