Stefano Palagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1093131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate. Annals of Biomedical Engineering, 2020, 48, 437-446.	1.3	25
2	Soft Robotic Locomotion by Peristaltic Waves in Granular Media. , 2020, , .		6
3	Light ontrolled Micromotors and Soft Microrobots. Advanced Optical Materials, 2019, 7, 1900370.	3.6	91
4	A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials. , 2019, , .		4
5	Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels. , 2019, , .		2
6	Acoustic Fabrication via the Assembly and Fusion of Particles. Advanced Materials, 2018, 30, 1704507.	11.1	103
7	Gait Learning for Soft Microrobots Controlled by Light Fields. , 2018, , .		10
8	Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets. , 2018, , .		6
9	Bioinspired microrobots. Nature Reviews Materials, 2018, 3, 113-124.	23.3	472
10	NANOSCALE ROBOTIC AGENTS IN BIOLOGICAL FLUIDS AND TISSUES. , 2018, , 19-42.		1
11	Micro- and nanorobots in Newtonian and biological viscoelastic fluids. , 2017, , 133-162.		7
12	Active Acoustic Surfaces Enable the Propulsion of a Wireless Robot. Advanced Materials Interfaces, 2017, 4, 1700933.	1.9	18
13	Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes. ACS Applied Materials & Interfaces, 2017, 9, 42536-42543.	4.0	21
14	Locomotion of light-driven soft microrobots through a hydrogel via local melting. , 2017, , .		3
15	Acoustic Surfaces: Active Acoustic Surfaces Enable the Propulsion of a Wireless Robot (Adv. Mater.) Tj ETQq1 I	0.7 <u>8</u> 4314	rgBT /Overlo
16	Wireless actuation with functional acoustic surfaces. Applied Physics Letters, 2016, 109, .	1.5	23
17	Towards photo-induced swimming: actuation of liquid crystalline elastomer in water. Proceedings of SPIE, 2016, , .	0.8	1
18	Wireless actuator based on ultrasonic bubble streaming. , 2016, , .		1

Wireless actuator based on ultrasonic bubble streaming. , 2016, , . 18

2

STEFANO PALAGI

#	Article	IF	CITATIONS
19	Soft continuous microrobots with multiple intrinsic degrees of freedom. , 2016, , .		2
20	Auxetic metamaterial simplifies soft robot design. , 2016, , .		39
21	Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softÂmicrorobots. Nature Materials, 2016, 15, 647-653.	13.3	757
22	3D-printed soft microrobot for swimming in biological fluids. , 2015, 2015, 4922-5.		2
23	Navigation of Magnetic Microrobots With Different User Interaction Levels. IEEE Transactions on Automation Science and Engineering, 2014, 11, 818-827.	3.4	15
24	A Power-Efficient Propulsion Method for Magnetic Microrobots. International Journal of Advanced Robotic Systems, 2014, 11, 116.	1.3	8
25	How does buoyancy of hydrogel microrobots affect their magnetic propulsion in liquids?. Applied Physics Letters, 2013, 102, .	1.5	15
26	Propulsion of swimming microrobots inspired by <i>metachronal waves</i> in ciliates: from biology to material specifications. Bioinspiration and Biomimetics, 2013, 8, 046004.	1.5	34
27	Bioinspired Design and Energetic Feasibility of an Autonomous Swimming Microrobot. Lecture Notes in Computer Science, 2013, , 415-417.	1.0	0
28	Modeling of a propulsion mechanism for swimming microrobots inspired by ciliate metachronal waves. , 2012, , .		2
29	Wireless swimming microrobots: Design and development of a 2 DoF magnetic-based system. , 2012, , .		4
30	Novel Smart Concepts for Designing Swimming Soft Microrobots. Procedia Computer Science, 2011, 7, 264-265.	1.2	4
31	Design and development of a soft magnetically-propelled swimming microrobot. , 2011, , .		18
32	Controlled Magnetic Propulsion of Floating Polymeric Two-Dimensional Nano-Objects. Advanced Robotics, 2011, 25, 1029-1047.	1.1	6
33	Magnetic Nanofilms for Biomedical Applications. Journal of Nanotechnology in Engineering and Medicine, 2010, 1, .	0.8	11
34	Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field. Open Research Europe, 0, 1, 129.	2.0	0
35	Direct laser writing of liquid crystal elastomers oriented by a horizontal electric field. Open Research Europe, 0, 1, 129.	2.0	8