Douglas P Jasmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10931237/publications.pdf

Version: 2024-02-01

		218677	223800
55	2,219	26	46
papers	citations	h-index	g-index
56	56	56	1569
30	30	30	1307
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Cell Death and Transcriptional Responses Induced in Larvae of the Nematode Haemonchus contortus by Toxins/Toxicants with Broad Phylogenetic Efficacy. Pharmaceuticals, 2021, 14, 598.	3.8	2
2	Rapid determination of nematode cell and organ susceptibility to toxic treatments. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 167-182.	3.4	6
3	De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal cells. PLoS Neglected Tropical Diseases, 2020, 14, e0007942.	3.0	10
4	Omics Driven Understanding of the Intestines of Parasitic Nematodes. Frontiers in Genetics, 2019, 10, 652.	2.3	13
5	Compartmentalization of functions and predicted miRNA regulation among contiguous regions of the nematode intestine. RNA Biology, 2017, 14, 1335-1352.	3.1	11
6	Direct experimental manipulation of intestinal cells in Ascaris suum, with minor influences on the global transcriptome. International Journal for Parasitology, 2017, 47, 271-279.	3.1	6
7	Functional and Phylogenetic Characterization of Proteins Detected in Various Nematode Intestinal Compartments*. Molecular and Cellular Proteomics, 2015, 14, 812-827.	3.8	23
8	Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential. EBioMedicine, 2015, 2, 1079-1089.	6.1	20
9	Peptidases Compartmentalized to the Ascaris suum Intestinal Lumen and Apical Intestinal Membrane. PLoS Neglected Tropical Diseases, 2015, 9, e3375.	3.0	14
10	Genome-Wide Tissue-Specific Gene Expression, Co-expression and Regulation of Co-expressed Genes in Adult Nematode Ascaris suum. PLoS Neglected Tropical Diseases, 2014, 8, e2678.	3.0	50
11	Gene expression analysis distinguishes tissue-specific and gender-related functions among adult Ascaris suum tissues. Molecular Genetics and Genomics, 2013, 288, 243-260.	2.1	9
12	Effect of ensilation of potato on viability of Taenia hydatigena eggs. Experimental Parasitology, 2013, 133, 483-486.	1.2	6
13	Effect of heat treatment on viability of Taenia hydatigena eggs. Experimental Parasitology, 2013, 133, 421-426.	1.2	9
14	Direct immunization of the abomasum or rectum of goats induces local lymph node responses against Haemonchus contortus mucosal antigens. Vaccine, 2011, 29, 2938-2946.	3.8	2
15	The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 2011, 43, 228-235.	21.4	285
16	Trichinella spiralis: Genomic Application to Control a Zoonotic Nematode. Infectious Disorders - Drug Targets, 2010, 10, 376-384.	0.8	7
17	Taenia taeniaeformis: Effectiveness of staining oncospheres is related to both temperature of treatment and molecular weight of dyes utilized. Veterinary Parasitology, 2008, 151, 203-211.	1.8	6
18	Intestinal Transcriptomes of Nematodes: Comparison of the Parasites Ascaris suum and Haemonchus contortus with the Free-living Caenorhabditis elegans. PLoS Neglected Tropical Diseases, 2008, 2, e269.	3.0	42

#	Article	IF	CITATIONS
19	Parasitic nematodes—From genomes to control. Veterinary Parasitology, 2007, 148, 31-42.	1.8	43
20	Fusion and differentiation of murine C2C12 skeletal muscle cells that express Trichinella spiralis p43 protein. Experimental Parasitology, 2006, 112, 67-75.	1.2	20
21	Expressed sequence tags from life cycle stages of Trichinella spiralis: Application to biology and parasite control. Veterinary Parasitology, 2005, 132, 13-17.	1.8	21
22	Gene discovery in the adenophorean nematode Trichinella spiralis: an analysis of transcription from three life cycle stages. Molecular and Biochemical Parasitology, 2004, 137, 277-291.	1.1	56
23	mRNA sequences for Haemonchus contortus intestinal cathepsin B-like cysteine proteases display an extreme in abundance and diversity compared with other adult mammalian parasitic nematodes. Molecular and Biochemical Parasitology, 2004, 137, 297-305.	1.1	51
24	Intestinal DNases of 36 and 38.5kDa from the parasitic nematode Haemonchus contortus have non-classic DNase characteristics and produce DNA fragments with 3′-hydroxyls. Experimental Parasitology, 2004, 108, 142-153.	1.2	2
25	Non-classic characteristics define prominent DNase activities from the intestine and other tissues of Haemonchus contortus. Experimental Parasitology, 2003, 104, 131-139.	1.2	6
26	Haemonchus contortus UNC-18 binds to Caenorhabditis elegans neuronal syntaxin. Molecular and Biochemical Parasitology, 2003, 130, 55-59.	1.1	1
27	Abomasal lymph node responses to Haemonchus contortus intestinal antigens established in kid goats by infection or immunization with intestinal antigens. Parasite Immunology, 2003, 25, 59-68.	1.5	6
28	PARASITICNEMATODEINTERACTIONS WITHMAMMALS ANDPLANTS. Annual Review of Phytopathology, 2003, 41, 245-270.	7.8	114
29	Distinct characteristics of two intestinal protein compartments discriminated by using fenbendazole and a benzimidazole resistant isolate of Haemonchus contortus. Experimental Parasitology, 2002, 101, 200-209.	1.2	5
30	Cathepsin B-like cysteine proteases and Caenorhabditis elegans homologues dominate gene products expressed in adult Haemonchus contortus intestine. Molecular and Biochemical Parasitology, 2001, 116, 159-169.	1.1	45
31	Cathepsin B-like Cysteine Proteases Confer Intestinal Cysteine Protease Activity in Haemonchus contortus. Journal of Biological Chemistry, 2001, 276, 2928-2934.	3.4	52
32	Trichinella spiralis-Infected Muscle Cells: Abundant RNA Polymerase II in Nuclear Speckle Domains Colocalizes with Nuclear Antigens. Infection and Immunity, 2001, 69, 4065-4071.	2.2	12
33	Multiple lethal effects induced by a benzimidazole anthelmintic in the anterior intestine of the nematode Haemonchus contortus. Molecular and Biochemical Parasitology, 2000, 105, 81-90.	1.1	50
34	Defined characteristics of cathepsin B-like proteins from nematodes: inferred functional diversity and phylogenetic relationships. Molecular and Biochemical Parasitology, 1999, 102, 297-310.	1.1	26
35	Nuclear antigens in Trichinella spiralis infected muscle cells: nuclear extraction, compartmentalization and complex formation. Molecular and Biochemical Parasitology, 1998, 92, 207-218.	1.1	35
36	Host nuclear abnormalities and depletion of nuclear antigens induced in Trichinella spiralis-infected muscle cells by the anthelmintic mebendazole. Molecular and Biochemical Parasitology, 1998, 96, 1-13.	1.1	14

#	Article	IF	CITATIONS
37	A tissue specific approach for analysis of membrane and secreted protein antigens from Haemonchus contortus gut and its application to diverse nematode species. Molecular and Biochemical Parasitology, 1998, 97, 55-68.	1.1	52
38	CD4 + T lymphocytes contribute to protective immunity induced in sheep and goats by Haemonchus contortus gut antigens. Parasite Immunology, 1997, 19, 435-445.	1.5	34
39	A cloned gene of Cryptosporidium parvum encodes neutralization-sensitive epitopes. Molecular and Biochemical Parasitology, 1996, 80, 137-147.	1.1	94
40	Identification of Babesia bigemina infected erythrocyte surface antigens containing epitopes conserved among strains. Parasite Immunology, 1994, 16, 119-127.	1.5	22
41	A Babesia bovis 225-kilodalton protein located on the cytoplasmic side of the erythrocyte membrane has sequence similarity with a region of glycogen phosphorylase. Molecular and Biochemical Parasitology, 1992, 52, 263-269.	1.1	33
42	Surface epitope localization and gene structure of a Babesia bovis 44-kilodalton variable merozoite surface antigen. Molecular and Biochemical Parasitology, 1992, 55, 75-84.	1.1	48
43	Neutralization-sensitive merozoite surface antigens of Babesia bovis encoded by members of a polymorphic gene family. Molecular and Biochemical Parasitology, 1992, 55, 85-94.	1.1	122
44	Trichinella spp.: Differential expression of acid phosphatase and myofibrillar proteins in infected muscle cells. Experimental Parasitology, 1991, 72, 321-331.	1.2	34
45	Characterization of the gene encoding a 60-kilodalton Babesia bovis merozoite protein with conserved and surface exposed epitopes. Molecular and Biochemical Parasitology, 1991, 46, 45-52.	1.1	114
46	DNA Probes Distinguish Geographical Isolates and Identify a Novel DNA Molecule of Babesia bovis. Journal of Parasitology, 1990, 76, 834.	0.7	24
47	Trichinella spiralis: Altered expression of muscle proteins in trichinosis. Experimental Parasitology, 1990, 70, 452-465.	1.2	50
48	A recombinant surface protein of Babesia bovis elicits bovine antibodies that react with live merozoites. Molecular and Biochemical Parasitology, 1989, 35, 239-247.	1.1	61
49	In Vitro Killing ofBabesia bovisby the Ornithine Analog $\hat{l}\pm$ -monofluoromethyldehydroornithine Methyl Ester. Journal of Protozoology, 1989, 36, 493-497.	0.8	1
50	Developmentally regulated addition of nucleotides within apocytochrome b transcripts in Trypanosoma brucei. Cell, 1987, 49, 337-345.	28.9	201
51	Variation of G-rich mitochondrial transcripts among stocks of Trypanosoma brucei. Molecular and Biochemical Parasitology, 1987, 22, 259-272.	1.1	24
52	Conservation of kinetoplastid minicircle characteristics without nucleotide sequence conservation. Molecular and Biochemical Parasitology, 1986, 18, 257-269.	1.1	39
53	Sequence organization in African trypanosome minicircles is defined by 18 base pair inverted repeats. Molecular and Biochemical Parasitology, 1986, 18, 321-331.	1.1	55
54	Identification of mitochondrial genes in Trypanosoma brucei and homology to cytochrome c oxidase II in two different reading frames. Molecular and Biochemical Parasitology, 1985, 15, 159-170.	1.1	43

#	Article	IF	CITATIONS
55	Apocytochromeband other mitochondrial DNA sequences are differentially expressed during the life cycle of Trypanosoma brucei. Nucleic Acids Research, 1985, 13, 4577-4596.	14.5	88