Paul C Dechow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10930450/publications.pdf

Version: 2024-02-01

91 papers 4,140 citations

34 h-index 62 g-index

95 all docs 95 docs citations 95 times ranked 3444 citing authors

#	Article	IF	CITATIONS
1	Mechanical compensation in the evolution of the early hominin feeding apparatus. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
2	Biomechanics of the mandible of Macaca mulatta during the power stroke of mastication: Loading, deformation, and strain regimes and the impact of food type. Journal of Human Evolution, 2020, 147, 102865.	1.3	17
3	Masticatory properties in pre-modern Holocene populations from Northern China. HOMO-Journal of Comparative Human Biology, 2019, 70, 15-30.	0.3	3
4	Divided zygoma in Holocene human populations from Northern China. American Journal of Human Biology, 2019, 31, e23314.	0.8	6
5	Two distalization methods compared in a novel patient-specific finite element analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 2019, 156, 326-336.	0.8	23
6	Odontogenic abscesses in rhesus macaques (<scp><i>Macaca mulatta</i></scp>) of Cayo Santiago. American Journal of Physical Anthropology, 2018, 167, 441-457.	2.1	4
7	The Vulnerability of the Temporomandibular Joint in Recent Northern China Populations. FASEB Journal, 2018, 32, 514.3.	0.2	O
8	Changes in Mandibular Cortical Bone Density and Elastic Properties during Growth., 2017, , 128-147.		1
9	<pre><scp>T</scp>he <scp>B</scp>iomechanics of <scp>B</scp>ony <scp>F</scp>acial "<scp>B</scp>uttresses―in <scp>S</scp>outh <scp>A</scp>frican <scp>A</scp>ustralopiths: <scp>A</scp>n <scp>E</scp>p>inite <scp>E</scp>lement <scp>A</scp>nalvsis. Anatomical Record. 2017. 300. 171-195.</pre>	0.8	19
10	In vivo bone strain and finite element modeling of a rhesus macaque mandible during mastication. Zoology, 2017, 124, 13-29.	0.6	36
11	Elevation of a full-thickness mucoperiosteal flap alone accelerates orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics, 2017, 152, 49-57.	0.8	9
12	Biomechanical implications of cortical elastic properties of the macaque mandible. Zoology, 2017, 124, 3-12.	0.6	20
13	Mechanical evidence that Australopithecus sediba was limited in its ability to eat hard foods. Nature Communications, 2016, 7, 10596.	5.8	43
14	Internal Bone Architecture in the Zygoma of Human and <i>Pan</i> . Anatomical Record, 2016, 299, 1704-1717.	0.8	5
15	The mandibles of castrated male rhesus macaques (<scp><i>M</i></scp> <i>acaca mulatta</i>): The effects of orchidectomy on bone and teeth. American Journal of Physical Anthropology, 2016, 159, 31-51.	2.1	18
16	Review of <i>In Vivo</i> Bone Strain Studies and Finite Element Models of the Zygomatic Complex in Humans and Nonhuman Primates: Implications for Clinical Research and Practice. Anatomical Record, 2016, 299, 1753-1778.	0.8	32
17	Elastic Properties of Chimpanzee Craniofacial Cortical Bone. Anatomical Record, 2016, 299, 1718-1733.	0.8	7
18	Development, Structure, and Function of the Zygomatic Bones: What is New and Why Do We Care?. Anatomical Record, 2016, 299, 1611-1615.	0.8	12

#	Article	IF	CITATIONS
19	<scp>D</scp> ivided <scp>Z</scp> ygomatic <scp>B</scp> one in <scp>P</scp> rimates <scp>W</scp> ith <scp>I</scp> mplications of <scp>S</scp> kull <scp>M</scp> orphology and <scp>B</scp> iomechanics. Anatomical Record, 2016, 299, 1801-1829.	0.8	8
20	Human feeding biomechanics: performance, variation, and functional constraints. PeerJ, 2016, 4, e2242.	0.9	43
21	The Feeding Biomechanics and Dietary Ecology of <scp><i>P</i></scp> <i>aranthropus boiseiAnatomical Record, 2015, 298, 145-167.</i>	0.8	100
22	The Winds of Change Revisited: Progress Towards Building a Culture of Evidenceâ€Based Dentistry. Journal of Dental Education, 2015, 79, 499-509.	0.7	14
23	Twist1 Is Essential for Tooth Morphogenesis and Odontoblast Differentiation. Journal of Biological Chemistry, 2015, 290, 29593-29602.	1.6	28
24	Dentate Transport Discs Can Be Used to Reconstruct Large Segmental Mandibular Defects. Journal of Oral and Maxillofacial Surgery, 2015, 73, 745-758.	0.5	3
25	Biomechanical Implications of Intraspecific Shape Variation in Chimpanzee Crania: Moving Toward an Integration of Geometric Morphometrics and Finite Element Analysis. Anatomical Record, 2015, 298, 122-144.	0.8	47
26	The winds of change revisited: progress towards building a culture of evidence-based dentistry. Journal of Dental Education, 2015, 79, 499-509.	0.7	5
27	Biomechanics of the Canine Mandible During Bone Transport Distraction Osteogenesis. Journal of Biomechanical Engineering, 2014, 136, .	0.6	0
28	Orexin Regulates Bone Remodeling via a Dominant Positive Central Action and a Subordinate Negative Peripheral Action. Cell Metabolism, 2014, 19, 927-940.	7.2	38
29	How does the amount of surgical insult affect bone around moving teeth?. American Journal of Orthodontics and Dentofacial Orthopedics, 2014, 145, S92-S99.	0.8	38
30	In Vitro Mechanical Evaluation of Mandibular Bone Transport Devices. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .	0.4	0
31	Viewpoints: Diet and dietary adaptations in early hominins: The hard food perspective. American Journal of Physical Anthropology, 2013, 151, 339-355.	2.1	89
32	HDAC7 Inhibits Osteoclastogenesis by Reversing RANKL-Triggered \hat{l}^2 -Catenin Switch. Molecular Endocrinology, 2013, 27, 325-335.	3.7	40
33	Osseointegration of Dental Implants Placed into Canine Mandibular Bone Regenerated by Bone Transport Distraction Osteogenesis. International Journal of Oral and Maxillofacial Implants, 2013, 28, 677-686.	0.6	2
34	Considering the constrained lever model: Feeding biomechanics of OH 5 assessed using finite element analysis. FASEB Journal, 2013, 27, 520.6.	0.2	0
35	Regional material heterogeneity in craniofacial cortical bone of the genus Pan. FASEB Journal, 2013, 27, 756.7.	0.2	0
36	Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor \hat{I}^3 . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3143-3148.	3.3	331

#	Article	IF	CITATIONS
37	Changes in Biomechanical Strain and Morphology of Rat Calvarial Sutures and Bone After Tgfâ€Î²3 Inhibition of Posterior Interfrontal Suture Fusion. Anatomical Record, 2012, 295, 928-938.	0.8	4
38	Bone Regeneration and Docking Site Healing After Bone Transport Distraction Osteogenesis in the Canine Mandible. Journal of Oral and Maxillofacial Surgery, 2012, 70, 429-439.	0.5	9
39	Probabilistic finite element analysis of a craniofacial finite element model. Journal of Theoretical Biology, 2012, 300, 242-253.	0.8	30
40	Microwear, mechanics and the feeding adaptations of Australopithecus africanus. Journal of Human Evolution, 2012, 62, 165-168.	1.3	24
41	Vacuum-induced Suction Stimulates Increased Numbers of Blood Vessels in Healthy Dog Gingiva. Wounds, 2012, 24, 99-109.	0.2	2
42	Elastic anisotropy and off-axis ultrasonic velocity distribution in human cortical bone. Journal of Anatomy, 2011, 218, 26-39.	0.9	14
43	In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates. Journal of Anatomy, 2011, 218, 112-141.	0.9	83
44	Effects of latency on the quality and quantity ofÂbone produced by dentoalveolar distraction osteogenesis. American Journal of Orthodontics and Dentofacial Orthopedics, 2011, 140, 470-478.	0.8	17
45	Three-Dimensional Evaluation of Mandibular Bone Regenerated By Bone Transport Distraction Osteogenesis. Calcified Tissue International, 2011, 89, 43-52.	1.5	10
46	Architecture and Microstructure of Cortical Bone in Reconstructed Canine Mandibles After Bone Transport Distraction Osteogenesis. Calcified Tissue International, 2011, 89, 379-388.	1.5	10
47	Biomechanical characteristics of regenerated cortical bone in the canine mandible. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 551-559.	1.3	5
48	A finite element analysis of masticatory stress hypotheses. American Journal of Physical Anthropology, 2011, 145, 1-10.	2.1	34
49	Osteoclast Progenitors Reside in the Peroxisome Proliferator-Activated Receptor Î ³ -Expressing Bone Marrow Cell Population. Molecular and Cellular Biology, 2011, 31, 4692-4705.	1.1	41
50	Biphasic and Dosage-Dependent Regulation of Osteoclastogenesis by \hat{l}^2 -Catenin. Molecular and Cellular Biology, 2011, 31, 4706-4719.	1.1	161
51	Creating an evidence-based dentistry culture at Baylor College of Dentistry: the winds of change. Journal of Dental Education, 2011, 75, 279-90.	0.7	8
52	Regional, ontogenetic, and sexâ€related variations in elastic properties of cortical bone in baboon mandibles. American Journal of Physical Anthropology, 2010, 141, 526-549.	2.1	41
53	The Structural Rigidity of the Cranium of <i>Australopithecus africanus:</i> Implications for Diet, Dietary Adaptations, and the Allometry of Feeding Biomechanics. Anatomical Record, 2010, 293, 583-593.	0.8	70
54	Edentulation Alters Material Properties of Cortical Bone in the Human Craniofacial Skeleton: Functional Implications for Craniofacial Structure in Primate Evolution. Anatomical Record, 2010, 293, 618-629.	0.8	45

#	Article	IF	Citations
55	Biomechanical Configurations of Mandibular Transport Distraction Osteogenesis Devices. Tissue Engineering - Part B: Reviews, 2010, 16, 273-283.	2.5	9
56	Material properties of mandibular cortical bone in the American alligator, Alligator mississippiensis. Bone, 2010, 46, 860-867.	1.4	36
57	PGC1 \hat{l}^2 Mediates PPAR \hat{l}^3 Activation of Osteoclastogenesis and Rosiglitazone-Induced Bone Loss. Cell Metabolism, 2010, 11, 503-516.	7.2	216
58	The feeding biomechanics and dietary ecology of <i>Australopithecus africanus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2124-2129.	3.3	232
59	Biomechanical characteristics of cortical bone regenerate after mandibular distraction osteogenesis in dogs. FASEB Journal, 2009, 23, 650.3.	0.2	0
60	Relationship Between Three-Dimensional Microstructure and Elastic Properties of Cortical Bone in the Human Mandible and Femur., 2008, , 265-292.		10
61	Surface Strain on Bone and Sutures in a Monkey Facial Skeleton: An In Vitro Approach and its Relevance to Finite Element Analysis. , 2008, , 149-172.		19
62	Craniofacial Strain Patterns During Premolar Loading: Implications for Human Evolution. , 2008, , 173-198.		20
63	Biomechanical Strain and Morphologic Changes with Age in Rat Calvarial Bone and Sutures. Plastic and Reconstructive Surgery, 2007, 119, 2167-2178.	0.7	22
64	Masticatory biomechanics and its relevance to early hominid phylogeny: An examination of palatal thickness using finite-element analysis. Journal of Human Evolution, 2007, 52, 585-599.	1.3	98
65	Ontogeny and diachronic changes in sexual dimorphism in the craniofacial skeleton of rhesus macaques from Cayo Santiago, Puerto Rico. Journal of Human Evolution, 2007, 53, 350-361.	1.3	27
66	A comparison of cortical elastic properties in the craniofacial skeletons of three primate species and its relevance to the study of human evolution. Journal of Human Evolution, 2006, 51, 375-382.	1.3	51
67	Biomechanical effects of fixed partial denture therapy on strain patterns of the mandible. Journal of Prosthetic Dentistry, 2006, 95, 55-62.	1.1	13
68	Material properties of the dentate maxilla. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 962-972.	2.0	76
69	Inheritance of sutural pattern at the pterion in rhesus monkey skulls. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 1042-1049.	2.0	66
70	Elastic properties of external cortical bone in the craniofacial skeleton of the rhesus monkey. American Journal of Physical Anthropology, 2006, 131, 402-415.	2.1	61
71	Fusion patterns of craniofacial sutures in rhesus monkey skulls of known age and sex from Cayo Santiago. American Journal of Physical Anthropology, 2006, 131, 469-485.	2.1	57
72	Finite element analysis in functional morphology. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 283A, 259-274.	2.0	203

#	Article	IF	CITATIONS
73	Modeling masticatory muscle force in finite element analysis: Sensitivity analysis using principal coordinates analysis. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 283A, 288-299.	2.0	121
74	Modeling elastic properties in finite-element analysis: How much precision is needed to produce an accurate model?. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 283A, 275-287.	2.0	243
75	Material properties of the human cranial vault and zygoma. The Anatomical Record, 2003, 274A, 785-797.	2.3	157
76	Material properties of the inner and outer cortical tables of the human parietal bone. The Anatomical Record, 2002, 268, 7-15.	2.3	82
77	Elastic properties and masticatory bone stress in the Macaque mandible. American Journal of Physical Anthropology, 2000, 112, 553-574.	2.1	124
78	Force level and strain patterns during bilateral mandibular osteodistraction. Journal of Oral and Maxillofacial Surgery, 2000, 58, 171-178.	0.5	23
79	Structural properties of mandibular bone following application of a bone plate. Journal of Oral and Maxillofacial Surgery, 1995, 53, 1044-1051.	0.5	16
80	In vitro strain measurements in the condylar process of the human mandible. Archives of Oral Biology, 1994, 39, 853-867.	0.8	65
81	Bone strain following application of a rigid bone plate: An in vitro study in human mandibles. Journal of Oral and Maxillofacial Surgery, 1992, 50, 1066-1073.	0.5	34
82	An investigation of the oral pathologies occurring in bulimia nervosa. International Journal of Eating Disorders, 1990, 9, 191-199.	2.1	43
83	Occlusal force and craniofacial biomechanics during growth in rhesus monkeys. American Journal of Physical Anthropology, 1990, 83, 219-237.	2.1	132
84	Electromyography of the suprahyoid musculature following mandibular advancement with and without rigid fixation. Journal of Oral and Maxillofacial Surgery, 1990, 48, 49-53.	0.5	11
85	Short-term stability and muscle adaptation after mandibular advancement surgery with and without suprahyoid myotomy in juvenile Macaca mulatta. Oral Surgery, Oral Medicine, and Oral Pathology, 1989, 68, 135-149.	0.6	23
86	A comparison of stimulated bite force after mandibular advancement using rigid and nonrigid fixation. Journal of Oral and Maxillofacial Surgery, 1988, 46, 26-32.	0.5	18
87	Adaptation of the suprahyoid muscle complex to mandibular advancement surgery. American Journal of Orthodontics and Dentofacial Orthopedics, 1987, 92, 134-143.	0.8	50
88	Occlusal force after mandibular advancement in adult rhesus monkeys. Journal of Oral and Maxillofacial Surgery, 1986, 44, 887-893.	0.5	24
89	Additional fossilTheropithecus from Hopefield, South Africa: A comparison with other African sites and a reevaluation of its taxonomic status. American Journal of Physical Anthropology, 1984, 63, 405-435.	2.1	26
90	Estimation of body weights from craniometric variables in baboons. American Journal of Physical Anthropology, 1983, 60, 113-123.	2.1	21

Paul C Dechow

#	Article	IF	CITATIONS
91	A method of bite force measurement in primates. Journal of Biomechanics, 1983, 16, 797-802.	0.9	55