Bradley Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10929829/publications.pdf

Version: 2024-02-01

279798 243625 2,401 62 23 44 h-index citations g-index papers 68 68 68 1376 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects. Journal of Quality Technology, $2011, 43, 1-15$.	2.5	337
2	Split-Plot Designs: What, Why, and How. Journal of Quality Technology, 2009, 41, 340-361.	2.5	159
3	A Simple Bayesian Modification of <i>D</i> Optimal Designs to Reduce Dependence on an Assumed Model. Technometrics, 1994, 36, 37-47.	1.9	126
4	A Simple Bayesian Modification of D-Optimal Designs to Reduce Dependence on an Assumed Model. Technometrics, 1994, 36, 37.	1.9	117
5	Definitive Screening Designs with Added Two-Level Categorical Factors. Journal of Quality Technology, 2013, 45, 121-129.	2.5	102
6	Bayesian optimal designs for discrete choice experiments with partial profiles. Journal of Choice Modelling, 2011, 4, 52-74.	2.3	90
7	l-Optimal Versus D-Optimal Split-Plot Response Surface Designs. Journal of Quality Technology, 2012, 44, 85-101.	2.5	80
8	I-Optimal Design of Mixture Experiments. Journal of the American Statistical Association, 2016, 111, 899-911.	3.1	80
9	An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs. Journal of Business and Economic Statistics, 2009, 27, 279-291.	2.9	75
10	A candidate-set-free algorithm for generating D-optimal split-plot designs. Journal of the Royal Statistical Society Series C: Applied Statistics, 2007, 56, 347-364.	1.0	65
11	The usefulness of Bayesian optimal designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2011, 27, 173-188.	1.5	59
12	Effective Design-Based Model Selection for Definitive Screening Designs. Technometrics, 2017, 59, 319-329.	1.9	55
13	Fast Flexible Space-Filling Designs for Nonrectangular Regions. Quality and Reliability Engineering International, 2015, 31, 829-837.	2.3	52
14	Design and analysis for the Gaussian process model. Quality and Reliability Engineering International, 2009, 25, 515-524.	2.3	51
15	Bayesian D-optimal supersaturated designs. Journal of Statistical Planning and Inference, 2008, 138, 86-92.	0.6	50
16	Efficient Designs With Minimal Aliasing. Technometrics, 2011, 53, 62-71.	1.9	50
17	Comparing Computer Experiments for the Gaussian Process Model Using Integrated Prediction Variance. Quality Engineering, 2013, 25, 164-174.	1.1	43
18	Construction of a 21-Component Layered Mixture Experiment Design Using a New Mixture Coordinate-Exchange Algorithm. Quality Engineering, 2005, 17, 579-594.	1.1	39

#	Article	IF	Citations
19	Recommendations on the use of Bayesian optimal designs for choice experiments. Quality and Reliability Engineering International, 2008, 24, 737-744.	2.3	39
20	Generating and Assessing Exact <i>G</i> Optimal Designs. Journal of Quality Technology, 2010, 42, 3-20.	2.5	34
21	Statistical Engineeringâ€"Forming the Foundations. Quality Engineering, 2012, 24, 110-132.	1.1	34
22	Optimal Supersaturated Designs. Journal of the American Statistical Association, 2014, 109, 1592-1600.	3.1	34
23	A-optimal versus D-optimal design of screening experiments. Journal of Quality Technology, 2021, 53, 369-382.	2.5	27
24	An improved twoâ€stage variance balance approach for constructing partial profile designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2015, 31, 626-648.	1.5	25
25	Blocking Schemes for Definitive Screening Designs. Technometrics, 2016, 58, 74-83.	1.9	24
26	Using Definitive Screening Designs to Identify Active First- and Second-Order Factor Effects. Journal of Quality Technology, 2017, 49, 244-264.	2.5	24
27	Alternatives to resolution IV screening designs in 16 runs. International Journal of Experimental Design and Process Optimisation, 2010, 1, 285.	0.2	23
28	Optimal Design of Blocked and Split-Plot Experiments for Fixed Effects and Variance Component Estimation. Technometrics, 2014, 56, 132-144.	1.9	23
29	Design and analysis of industrial stripâ€plot experiments. Quality and Reliability Engineering International, 2010, 26, 127-136.	2.3	21
30	Comparing Computer Experiments for Fitting High-Order Polynomial Metamodels. Journal of Quality Technology, 2010, 42, 86-102.	2.5	20
31	Bridge Designs for Modeling Systems With Low Noise. Technometrics, 2015, 57, 155-163.	1.9	17
32	Statistical Engineeringâ€"Roles for Statisticians and the Path Forward. Quality Engineering, 2012, 24, 133-152.	1.1	16
33	An Algorithm for Finding D-Efficient Equivalent-Estimation Second-Order Split-Plot Designs. Journal of Quality Technology, 2012, 44, 363-374.	2.5	15
34	Rejoinder: the usefulness of Bayesian optimal designs for discrete choice experiments. Applied Stochastic Models in Business and Industry, 2011, 27, 197-203.	1.5	14
35	Construction, Properties, and Analysis of Group-Orthogonal Supersaturated Designs. Technometrics, 2020, 62, 403-414.	1.9	14
36	Benefits and Fast Construction of Efficient Two-Level Foldover Designs. Technometrics, 2017, 59, 48-57.	1.9	12

#	Article	IF	CITATIONS
37	21st century screening experiments: What, why, and how. Quality Engineering, 2016, 28, 98-106.	1.1	11
38	Comparing designs for computer simulation experiments. , 2008, , .		10
39	Comparing Two-Stage Segmentation Methods for Choice Data with a One-Stage Latent Class Choice Analysis. Communications in Statistics Part B: Simulation and Computation, 2013, 42, 1188-1212.	1.2	10
40	Graphical Tools for Assessing the Sensitivity of Response Surface Designs to Model Misspecification. Technometrics, 2009, 51, 75-87.	1.9	9
41	Using Firth's method for model estimation and market segmentation based on choice data. Journal of Choice Modelling, 2019, 31, 1-21.	2.3	9
42	A Split-Plot Experiment with Factor-Dependent Whole-Plot Sizes. Journal of Quality Technology, 2011, 43, 66-79.	2.5	8
43	Three-Stage Industrial Strip-Plot Experiments. Journal of Quality Technology, 2013, 45, 1-17.	2.5	7
44	Partial replication of small two-level factorial designs. Quality Engineering, 2017, 29, 190-195.	1.1	6
45	Classical design structure of orthogonal designs with six to eight factors and sixteen runs. Quality and Reliability Engineering International, 2011, 27, 61-70.	2.3	5
46	A comparison of two-level designs to estimate all main effects and two-factor interactions. Quality Engineering, 2016, 28, 369-380.	1.1	5
47	Design augmentation for response optimization and model estimation. Quality Engineering, 2018, 30, 38-51.	1.1	5
48	Fast flexible spaceâ€filling designs with nominal factors for nonrectangular regions. Quality and Reliability Engineering International, 2019, 35, 677-684.	2.3	5
49	Developing a space-filling mixture experiment design when the components are subject to linear and nonlinear constraints. Quality Engineering, 2019, 31, 463-472.	1.1	5
50	The prediction profiler at 30. Quality Engineering, 2021, 33, 417-424.	1.1	5
51	Optimal Design of Blocked Experiments in the Presence of Supplementary Information About the Blocks. Journal of Quality Technology, 2015, 47, 301-317.	2.5	4
52	Analysing no-confounding designs using the Dantzig selector. International Journal of Experimental Design and Process Optimisation, 2015, 4, 183.	0.2	3
53	Alternatives to resolution III regular fractional factorial designs for 9–14 factors in 16 runs. Applied Stochastic Models in Business and Industry, 2015, 31, 50-58.	1.5	3
54	Partial replication of definitive screening designs. Quality Engineering, 2020, 32, 4-9.	1.1	3

#	Article	IF	CITATIONS
55	Direct construction of globally Dâ€optimal designs for factors at two levels and main effects models. Quality and Reliability Engineering International, 2020, 36, 797-816.	2.3	3
56	Optimal Experimental Design in the Presence of Nested Factors. Technometrics, 2019, 61, 533-544.	1.9	2
57	A novel application of a definitive screening design: A case study. Quality Engineering, 2021, 33, 563-569.	1.1	2
58	Discussion of "Response surface design evaluation and comparison―by Christine Anderson-Cook, Connie Borror and Douglas Montgomery. Journal of Statistical Planning and Inference, 2009, 139, 642-644.	0.6	1
59	Prediction variance properties of bridge designs. International Journal of Experimental Design and Process Optimisation, 2015, 4, 234.	0.2	1
60	Noâ€confounding designs with 20 runs—Alternatives to resolution IV screening designs. Quality and Reliability Engineering International, 2017, 33, 1861-1872.	2.3	1
61	No-confounding designs with 24 runs for 7-12 factors. International Journal of Experimental Design and Process Optimisation, 2017, 5, 151.	0.2	1
62	Aliased informed model selection strategies for sixâ€factor noâ€confounding designs. Quality and Reliability Engineering International, 2021, 37, 3055.	2.3	0