## LÃ;szlÃ<sup>3</sup> LénÃ;rd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10929783/publications.pdf Version: 2024-02-01



Ι Διςτι Δ3 Ι Δ ΟΝ Διση

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Intraamygdaloid Oxytocin Reduces Anxiety in the Valproate-Induced Autism Rat Model. Biomedicines, 2022, 10, 405.                                                                                                                  | 1.4 | 7         |
| 2  | Novel probiotic treatment of autism spectrum disorder associated social behavioral symptoms in two rodent models. Scientific Reports, 2022, 12, 5399.                                                                             | 1.6 | 17        |
| 3  | The D2-like Dopamine Receptor Agonist Quinpirole Microinjected Into the Ventral Pallidum<br>Dose-Dependently Inhibits the VTA and Induces Place Aversion. International Journal of<br>Neuropsychopharmacology, 2022, 25, 590-599. | 1.0 | 7         |
| 4  | Effects of D2 dopamine receptor activation in the ventral pallidum on sensory gating and<br>food-motivated learning in control and schizophrenia model (Wisket) rats. Behavioural Brain<br>Research, 2021, 400, 113047.           | 1.2 | 0         |
| 5  | Characterization of lymphocyte subpopulations and cardiovascular markers in pericardial fluid of cardiac surgery patients. Clinical Hemorheology and Microcirculation, 2020, 73, 579-590.                                         | 0.9 | 4         |
| 6  | Cognitive performance of the MAM-E17 schizophrenia model rats in different age-periods. Behavioural<br>Brain Research, 2020, 379, 112345.                                                                                         | 1.2 | 2         |
| 7  | Determination of frail state and association of frailty with inflammatory markers among cardiac surgery patients in a Central European patient population. Clinical Hemorheology and Microcirculation, 2020, 76, 341-350.         | 0.9 | 9         |
| 8  | QRFP administration into the medial hypothalamic nuclei improves memory in rats. Brain Research, 2020, 1727, 146563.                                                                                                              | 1.1 | 2         |
| 9  | Disturbance of taste reactivity and other behavioral alterations after bilateral interleukin-1β<br>microinjection into the cingulate cortex of the rat. Behavioural Brain Research, 2020, 383, 112537.                            | 1.2 | 1         |
| 10 | Ventromedial prefrontal cortex is involved in preference and hedonic evaluation of tastes.<br>Behavioural Brain Research, 2019, 367, 149-157.                                                                                     | 1.2 | 2         |
| 11 | Destruction of noradrenergic terminals increases dopamine concentration and reduces dopamine metabolism in the medial prefrontal cortex. Behavioural Brain Research, 2018, 344, 57-64.                                            | 1.2 | 3         |
| 12 | Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal<br>(ventrolateral prefrontal) cortex. Neuroscience and Biobehavioral Reviews, 2018, 85, 44-53.                                           | 2.9 | 2         |
| 13 | Iontophoretic microlesions with kainate or 6-hydroxidopamine in ventromedial prefrontal cortex result in deficit in conditioned taste avoidance to palatable tastants. Brain Research Bulletin, 2018, 143, 106-115.               | 1.4 | 3         |
| 14 | Identifying non-toxic doses of manganese for manganese-enhanced magnetic resonance imaging to map<br>brain areas activated by operant behavior in trained rats. Magnetic Resonance Imaging, 2017, 37, 122-133.                    | 1.0 | 12        |
| 15 | Effects of RFamide-related peptide-1 (RFRP-1) microinjections into the central nucleus of amygdala on passive avoidance learning in rats. Neuropeptides, 2017, 62, 81-86.                                                         | 0.9 | 4         |
| 16 | Role of D2 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behavioural<br>Brain Research, 2017, 321, 99-105.                                                                                         | 1.2 | 20        |
| 17 | The MAM-E17 schizophrenia rat model: Comprehensive behavioral analysis of pre-pubertal, pubertal and adult rats. Behavioural Brain Research, 2017, 332, 75-83.                                                                    | 1.2 | 15        |
| 18 | Neuronal coding of auditory sensorimotor gating in medial prefrontal cortex. Behavioural Brain<br>Research, 2017, 326, 200-208.                                                                                                   | 1.2 | 10        |

LÃiszlÃ<sup>3</sup> LénÃird

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The role of GST polymorphism in reperfusion induced oxidative stress, inflammatory responses and clinical complications after surgical and percutaneous coronary intervention. Clinical Hemorheology and Microcirculation, 2017, 66, 261-272. | 0.9 | 7         |
| 20 | Hemokinin-1 mediates anxiolytic and anti-depressant-like actions in mice. Brain, Behavior, and Immunity, 2017, 59, 219-232.                                                                                                                   | 2.0 | 17        |
| 21 | Role of ventral pallidal D2 dopamine receptors in the consolidation of spatial memory. Behavioural<br>Brain Research, 2016, 313, 1-9.                                                                                                         | 1.2 | 14        |
| 22 | Effects of direct QRFP-26 administration into the medial hypothalamic area on food intake in rats.<br>Brain Research Bulletin, 2015, 118, 58-64.                                                                                              | 1.4 | 14        |
| 23 | The role of catecholamine innervation in the medial prefrontal cortex on the regulation of body weight and food intake. Behavioural Brain Research, 2015, 286, 318-327.                                                                       | 1.2 | 8         |
| 24 | Responses of rat medial prefrontal cortical neurons to Pavlovian conditioned stimuli and to delivery of appetitive reward. Behavioural Brain Research, 2015, 287, 109-119.                                                                    | 1.2 | 22        |
| 25 | Anxiolytic effect of neurotensin microinjection into the ventral pallidum. Behavioural Brain<br>Research, 2015, 294, 208-214.                                                                                                                 | 1.2 | 13        |
| 26 | Positive reinforcing effect of neurotensin microinjection into the ventral pallidum in conditioned place preference test. Behavioural Brain Research, 2015, 278, 470-475.                                                                     | 1.2 | 14        |
| 27 | Positive reinforcing effects of RFamide-related peptide-1 in the rat central nucleus of amygdala.<br>Behavioural Brain Research, 2014, 275, 101-106.                                                                                          | 1.2 | 9         |
| 28 | Intraamygdaloid microinjection of RFamide-related peptide-3 decreases food intake in rats. Brain<br>Research Bulletin, 2014, 107, 61-68.                                                                                                      | 1.4 | 14        |
| 29 | Effects of ventral pallidal D1 dopamine receptor activation on memory consolidation in morris water<br>maze test. Behavioural Brain Research, 2014, 274, 211-218.                                                                             | 1.2 | 13        |
| 30 | Role of D1 dopamine receptors of the ventral pallidum in inhibitory avoidance learning. Behavioural<br>Brain Research, 2014, 270, 131-136.                                                                                                    | 1.2 | 17        |
| 31 | The role of neurotensin in passive avoidance learning in the rat central nucleus of amygdala.<br>Behavioural Brain Research, 2012, 226, 597-600.                                                                                              | 1.2 | 25        |
| 32 | Microinjection of RFRP-1 in the central nucleus of amygdala decreases food intake in the rat. Brain<br>Research Bulletin, 2012, 88, 589-595.                                                                                                  | 1.4 | 25        |
| 33 | Taste reactivity alterations after streptozotocin microinjection into the mediodorsal prefrontal cortex. Behavioural Brain Research, 2012, 234, 228-232.                                                                                      | 1.2 | 7         |
| 34 | Gustatory perception alterations in obesity: An fMRI study. Brain Research, 2012, 1473, 131-140.                                                                                                                                              | 1.1 | 41        |
| 35 | Reduced capacity in automatic processing of facial expression in restrictive anorexia nervosa and obesity. Psychiatry Research, 2011, 188, 253-257.                                                                                           | 1.7 | 47        |
| 36 | Body weight and the reward system: the volume of the right amygdala may be associated with body mass index in young overweight men. Brain Imaging and Behavior, 2011, 5, 149-157.                                                             | 1.1 | 20        |

LÃiszlÃ<sup>3</sup> LénÃird

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of intraamygdaloid acylated-ghrelin in spatial learning. Brain Research Bulletin, 2010, 81, 33-37.                                                                                                      | 1.4 | 35        |
| 38 | The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala. Behavioural<br>Brain Research, 2010, 208, 430-435.                                                                 | 1.2 | 32        |
| 39 | Effects of neurotensin in amygdaloid spatial learning mechanisms. Behavioural Brain Research, 2010, 210, 280-283.                                                                                            | 1.2 | 23        |
| 40 | Positive reinforcing effects of substance P in the rat globus pallidus revealed by conditioned place preference. Behavioural Brain Research, 2010, 215, 152-155.                                             | 1.2 | 12        |
| 41 | Effects of substance P microinjections into the globus pallidus and central nucleus of amygdala on passive avoidance learning in rats. Behavioural Brain Research, 2009, 198, 397-403.                       | 1.2 | 34        |
| 42 | Intraamygdaloid microinjection of acylated-ghrelin influences passive avoidance learning.<br>Behavioural Brain Research, 2009, 202, 308-311.                                                                 | 1.2 | 43        |
| 43 | Positive reinforcing effects of substance P in the rat central nucleus of amygdala. Behavioural Brain<br>Research, 2009, 205, 307-310.                                                                       | 1.2 | 17        |
| 44 | Altered executive function in obesity. Exploration of the role of affective states on cognitive abilities. Appetite, 2009, 52, 535-539.                                                                      | 1.8 | 125       |
| 45 | Neuronal activity in rat medial prefrontal cortex during sucrose solution intake. NeuroReport, 2009, 20, 1235-1239.                                                                                          | 0.6 | 29        |
| 46 | Effects of intraamygdaloid microinjections of acylated-ghrelin on liquid food intake of rats. Brain<br>Research Bulletin, 2008, 77, 105-111.                                                                 | 1.4 | 15        |
| 47 | Is there any relationship between obesity and mental flexibility in children?. Appetite, 2007, 49, 675-678.                                                                                                  | 1.8 | 155       |
| 48 | Neuromedin C microinjected into the amygdala inhibits feeding. Brain Research Bulletin, 2007, 71, 386-392.                                                                                                   | 1.4 | 24        |
| 49 | Electrophysiological and behavioral evidences of the feeding-related neuronal processes in the orbitofrontal cortex. International Congress Series, 2007, 1301, 230-233.                                     | 0.2 | 3         |
| 50 | Involvement of the orbitofrontal cortical IL-1Î <sup>2</sup> mechanisms in the central homeostatic control.<br>International Congress Series, 2006, 1291, 137-140.                                           | 0.2 | 1         |
| 51 | Orexin-A microinjection mediated food and water intake are antagonized by selective orexin-1 receptor antagonist in the bed nucleus of stria terminalis. International Congress Series, 2006, 1291, 141-144. | 0.2 | 5         |
| 52 | Involvement of Forebrain Clucose-monitoring Neurons in Taste Information Processing:<br>Electrophysiological and Behavioral Studies. Chemical Senses, 2005, 30, i168-i169.                                   | 1.1 | 19        |
| 53 | Homeostatic alterations after intrapallidal microinjection of interleukin-1β in the rat. Appetite, 2005, 44, 171-180.                                                                                        | 1.8 | 9         |
| 54 | Homeostatic alterations induced by interleukin-1β microinjection into the orbitofrontal cortex in the rat. Appetite, 2005, 45, 137-147.                                                                      | 1.8 | 14        |

LÃiszlÃ<sup>3</sup> LénÃird

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of angiotensin II and AIII microinjections into the zona incerta after intra- and extracellular<br>fluid loss. Brain Research, 2004, 1002, 110-119.                                                                                             | 1.1 | 2         |
| 56 | Angiotensin II and III microinjections into the zona incerta influence drinking behavior. Brain Research, 2003, 977, 199-208.                                                                                                                           | 1.1 | 4         |
| 57 | Gastrin-releasing peptide microinjected into the amygdala inhibits feeding. Brain Research, 2002, 955, 55-63.                                                                                                                                           | 1.1 | 22        |
| 58 | Alterations of conditioned taste aversion after microiontophoretically applied neurotoxins in the medial prefrontal cortex of the rat. Brain Research Bulletin, 2000, 53, 751-758.                                                                      | 1.4 | 44        |
| 59 | Accumbens cholinergic interneurons play a role in the regulation of body weight and metabolism.<br>Physiology and Behavior, 2000, 70, 95-103.                                                                                                           | 1.0 | 32        |
| 60 | Responses to the Sensory Properties of Fat of Neurons in the Primate Orbitofrontal Cortex. Journal of Neuroscience, 1999, 19, 1532-1540.                                                                                                                | 1.7 | 271       |
| 61 | Effects of feeding and insulin on extracellular acetylcholine in the amygdala of freely moving rats.<br>Brain Research, 1998, 785, 41-48.                                                                                                               | 1.1 | 34        |
| 62 | Feeding-related dopamine in the amygdala of freely moving rats. NeuroReport, 1997, 8, 2817-2820.                                                                                                                                                        | 0.6 | 25        |
| 63 | Distribution and Time Course of Appearance of "Dark―Neurons and EEG Activity After Amygdaloid<br>Kainate Lesion. Brain Research Bulletin, 1997, 43, 235-243.                                                                                            | 1.4 | 6         |
| 64 | Norepinephrine Microinjections in the Hypothalamic Paraventricular Nucleus Increase Extracellular<br>Dopamine and Decrease Acetylcholine in the Nucleus Accumbens: Relevance to Feeding Reinforcement.<br>Journal of Neurochemistry, 1997, 68, 667-674. | 2.1 | 31        |
| 65 | Glucose-sensitive neurons of the globus pallidus: I. Neurochemical characteristics. Brain Research<br>Bulletin, 1995, 37, 149-155.                                                                                                                      | 1.4 | 33        |
| 66 | Glucose-sensitive neurons of the globus pallidus: II. Complex functional attributes. Brain Research<br>Bulletin, 1995, 37, 157-162.                                                                                                                     | 1.4 | 33        |
| 67 | Gustatory and Olfactory Responses of Chemosensitive Pallidal Neurons. , 1994, , 537-538.                                                                                                                                                                |     | Ο         |
| 68 | Responses of Pallidal Neurons to Microelectro-Phoretically Applied Glucose and Neurochemicals.<br>Advances in Behavioral Biology, 1994, , 239-244.                                                                                                      | 0.2 | 0         |
| 69 | Complex attributes of lateral hypothalamic neurons in the regulation of feeding of alert rhesus monkeys. Brain Research Bulletin, 1990, 25, 933-939.                                                                                                    | 1.4 | 24        |
| 70 | Catecholaminergic and Opioid Mechanisms in Conditioned Food Intake Behavior of the Monkey<br>Amygdala. , 1988, , 109-118.                                                                                                                               |     | 3         |
| 71 | Feeding-related activity of glucose-and morphine-sensitive neurons in the monkey amygdala. Brain<br>Research, 1986, 399, 167-172.                                                                                                                       | 1.1 | 74        |
| 72 | Self-injection of amphetamine directly into the brain. Psychopharmacology, 1983, 81, 158-163.                                                                                                                                                           | 1.5 | 399       |

| #  | Article                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Amygdalar noradrenergic and dopaminergic mechanisms in the regulation of hunger and thirst-motivated behavior. Brain Research, 1982, 233, 115-132. | 1.1 | 50        |
| 74 | Sex-dependent body weight loss after bilateral 6-hydroxydopamine injection into the globus pallidus.<br>Brain Research, 1977, 128, 559-568.        | 1.1 | 30        |