
Chase P Broedersz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092840/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disentangling cadherin-mediated cell-cell interactions in collective cancer cell migration. Biophysical Journal, 2022, 121, 44-60.	0.2	10
2	Irreversibility in linear systems with colored noise. Physical Review E, 2022, 105, 024118.	0.8	2
3	Nonlinear mechanics of human mitotic chromosomes. Nature, 2022, 605, 545-550.	13.7	30
4	3D printed protein-based robotic structures actuated by molecular motor assemblies. Nature Materials, 2022, 21, 703-709.	13.3	12
5	Learning the dynamics of cell–cell interactions in confined cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
6	Learning the distribution of single-cell chromosome conformations in bacteria reveals emergent order across genomic scales. Nature Communications, 2021, 12, 1963.	5.8	14
7	Theory of Active Intracellular Transport by DNA Relaying. Physical Review Letters, 2021, 127, 138101.	2.9	4
8	Nonlinear stress relaxation of transiently crosslinked biopolymer networks. Physical Review E, 2021, 104, 034418.	0.8	6
9	Single-cell growth inference of Corynebacterium glutamicum reveals asymptotically linear growth. ELife, 2021, 10, .	2.8	7
10	A lattice kinetic Monte-Carlo method for simulating chromosomal dynamics and other (non-)equilibrium bio-assemblies. Soft Matter, 2020, 16, 544-556.	1.2	10
11	Area and Geometry Dependence of Cell Migration in Asymmetric Two-State Micropatterns. Biophysical Journal, 2020, 118, 552-564.	0.2	30
12	Inferring the Dynamics of Underdamped Stochastic Systems. Physical Review Letters, 2020, 125, 058103.	2.9	46
13	Learning the non-equilibrium dynamics of Brownian movies. Nature Communications, 2020, 11, 5378.	5.8	20
14	Disentangling the behavioural variability of confined cell migration. Journal of the Royal Society Interface, 2020, 17, 20190689.	1.5	21
15	Single Quality Factor for Enthalpyâ€Entropy Compensation, Isoequilibrium and Isokinetic Relationships. ChemPhysChem, 2020, 21, 1632-1643.	1.0	9
16	Nonequilibrium dynamics of isostatic spring networks. Physical Review E, 2019, 100, 013002.	0.8	5
17	Fiber plucking by molecular motors yields large emergent contractility in stiff biopolymer networks. Soft Matter, 2019, 15, 1481-1487.	1.2	5
18	Scaling behavior of nonequilibrium measures in internally driven elastic assemblies. Physical Review E, 2019, 99, 052406.	0.8	6

CHASE P BROEDERSZ

#	Article	IF	CITATIONS
19	Stochastic nonlinear dynamics of confined cell migration in two-state systems. Nature Physics, 2019, 15, 595-601.	6.5	77
20	Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving. Soft Matter, 2019, 15, 8067-8076.	1.2	5
21	Stress-dependent amplification of active forces in nonlinear elastic media. Soft Matter, 2019, 15, 331-338.	1.2	12
22	Broken detailed balance and non-equilibrium dynamics in living systems: a review. Reports on Progress in Physics, 2018, 81, 066601.	8.1	175
23	Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proceedings of the United States of America, 2018, 115, 4075-4080.	3.3	231
24	Guiding 3D cell migration in deformed synthetic hydrogel microstructures. Soft Matter, 2018, 14, 2816-2826.	1.2	38
25	Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome. New Journal of Physics, 2018, 20, 035002.	1.2	9
26	Bacterial chromosome organization by collective dynamics of SMC condensins. Journal of the Royal Society Interface, 2018, 15, 20180495.	1.5	20
27	Nonequilibrium Scaling Behavior in Driven Soft Biological Assemblies. Physical Review Letters, 2018, 121, 038002.	2.9	26
28	Physical limits to biomechanical sensing in disordered fibre networks. Nature Communications, 2017, 8, 16096.	5.8	47
29	Broken detailed balance at mesoscopic scales in active biological systems. Science, 2016, 352, 604-607.	6.0	259
30	Multi-scale strain-stiffening of semiflexible bundle networks. Soft Matter, 2016, 12, 2145-2156.	1.2	72
31	Fiber networks amplify active stress. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2827-2832.	3.3	143
32	Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep. Scientific Reports, 2015, 5, 16607.	1.6	18
33	Statistical Mechanics of the US Supreme Court. Journal of Statistical Physics, 2015, 160, 275-301.	0.5	41
34	Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8809-8814.	3.3	96
35	A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates. Rheologica Acta, 2014, 53, 75-83.	1.1	16

36 Nuclear mechanics. Nucleus, 2013, 4, 156-159.

0.6 9

CHASE P BROEDERSZ

#	Article	IF	CITATIONS
37	Stress-Enhanced Gelation: A Dynamic Nonlinearity of Elasticity. Physical Review Letters, 2013, 110, 018103.	2.9	52
38	Criticality and isostaticity in fibre networks. Nature Physics, 2011, 7, 983-988.	6.5	266
39	Nonlinear Viscoelasticity of Actin Transiently Cross-linked with Mutant α-Actinin-4. Journal of Molecular Biology, 2011, 411, 1062-1071.	2.0	42
40	Origins of Elasticity in Intermediate Filament Networks. Physical Review Letters, 2010, 104, 058101.	2.9	165
41	Elasticity in Ionically Cross-Linked Neurofilament Networks. Biophysical Journal, 2010, 98, 2147-2153.	0.2	52
42	Cross-Link-Governed Dynamics of Biopolymer Networks. Physical Review Letters, 2010, 105, 238101.	2.9	124
43	Divalent Cations Crosslink Vimentin Intermediate Filament Tail Domains to Regulate Network Mechanics. Journal of Molecular Biology, 2010, 399, 637-644.	2.0	98
44	Measurement of nonlinear rheology of cross-linked biopolymer gels. Soft Matter, 2010, 6, 4120.	1.2	91