Marcus V S Bonança

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluctuation theorem for irreversible entropy production in electrical conduction. Physical Review E, 2022, 105, L012105.	2.1	4
2	Series Expansion of the Excess Work Using Nonlinear Response Theory. Journal of Statistical Physics, 2022, 186, 1.	1.2	1
3	Three phases of quantum annealing: Fast, slow, and very slow. Physical Review A, 2022, 105, .	2.5	6
4	Kibble–Zurek Scaling from Linear Response Theory. Entropy, 2022, 24, 666.	2.2	4
5	Assessing the performance of quantum annealing with nonlinear driving. Physical Review A, 2022, 105,	2.5	5
6	Negative entropy production rates in Drude-Sommerfeld metals. Physical Review E, 2021, 103, 012109.	2.1	7
7	Thermodynamic control —An old paradigm with new applications. Europhysics Letters, 2020, 131, 20001.	2.0	51
8	Compatibility of linear-response theory with the second law of thermodynamics and the emergence of negative entropy production rates. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 013206.	2.3	13
9	Verification of finite bath fluctuation theorem for a non-ergodic system. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 345002.	2.1	2
10	Energy extraction of a chaotic system in a cyclic process: a Szilárd engine perspective. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 083210.	2.3	1
11	Approaching Carnot efficiency at maximum power in linear response regime. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 123203.	2.3	17
12	Minimal dissipation in processes far from equilibrium. Physical Review E, 2018, 98, .	2.1	24
13	Microcanonical Szilárd engines beyond the quasistatic regime. Physical Review E, 2017, 96, 062117.	2.1	2
14	Conditional reversibility in nonequilibrium stochastic systems. Physical Review E, 2016, 93, 022101.	2.1	7
15	Non-Monotonic Behavior of the Thermodynamic Work as a Function of Switching Time. Brazilian Journal of Physics, 2016, 46, 248-253.	1.4	5
16	Shortcuts to adiabaticity from linear response theory. Physical Review E, 2015, 92, 042148.	2.1	46
17	Degenerate optimal paths in thermally isolated systems. Physical Review E, 2015, 91, 042141.	2.1	25
18	Optimal driving of isothermal processes close to equilibrium. Journal of Chemical Physics, 2014, 140, 244119.	3.0	66

2

#	Article	IF	CITATIONS
19	Relaxation in finite and isolated classical systems: An extension of Onsager's regression hypothesis. Physical Review E, 2012, 85, 031122.	2.1	2
20	Lyapunov decoherence rate in classically chaotic systems. Physical Review E, 2011, 83, 046214.	2.1	10
21	Fluctuation-dissipation theorem for the microcanonical ensemble. Physical Review E, 2008, 78, 031107.	2.1	5
22	Classical dissipation and asymptotic equilibrium via interaction with chaotic systems. Physica A: Statistical Mechanics and Its Applications, 2006, 365, 333-350.	2.6	13
23	Quantum dissipation and decoherence via interaction with low-dimensional chaos: A Feynman-Vernon approach. Physical Review A, 2006, 74, .	2.5	6