Van Anthony M Villar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10926017/publications.pdf

Version: 2024-02-01

49 papers

1,392 citations

304743 22 h-index 345221 36 g-index

50 all docs 50 docs citations

50 times ranked

1942 citing authors

#	Article	IF	CITATIONS
1	Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. Journal of Clinical Investigation, 2008, 118 , 2986 - 2986 .	8.2	181
2	Dopamine and Renal Function and Blood Pressure Regulation. , 2011, 1, 1075-1117.		95
3	Lipid Rafts Keep NADPH Oxidase in the Inactive State in Human Renal Proximal Tubule Cells. Hypertension, 2008, 51, 481-487.	2.7	78
4	Localization and signaling of GPCRs in lipid rafts. Methods in Cell Biology, 2016, 132, 3-23.	1.1	72
5	Dopamine 5 receptor mediates Ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells. Journal of Clinical Investigation, 2008, $118, 2180-9$.	8.2	72
6	Reactive Oxygen Species–Dependent Hypertension in Dopamine D 2 Receptor–Deficient Mice. Hypertension, 2007, 49, 672-678.	2.7	61
7	G Protein-coupled Receptor Kinase 4 (GRK4) Regulates the Phosphorylation and Function of the Dopamine D3 Receptor. Journal of Biological Chemistry, 2009, 284, 21425-21434.	3.4	57
8	Gastrin and D ₁ Dopamine Receptor Interact to Induce Natriuresis and Diuresis. Hypertension, 2013, 62, 927-933.	2.7	54
9	Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatric Nephrology, 2008, 23, 2131-2146.	1.7	47
10	The emerging role of sorting nexins in cardiovascular diseases. Clinical Science, 2019, 133, 723-737.	4.3	44
11	Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biology, 2014, 2, 570-579.	9.0	40
12	Renal D3 dopamine receptor stimulation induces natriuresis by endothelin B receptor interactions. Kidney International, 2008, 74, 750-759.	5.2	35
13	Reactive Oxygen Species and Dopamine Receptor Function in Essential Hypertension. Clinical and Experimental Hypertension, 2009, 31, 156-178.	1.3	35
14	D ₁ -Like Receptors Regulate NADPH Oxidase Activity and Subunit Expression in Lipid Raft Microdomains of Renal Proximal Tubule Cells. Hypertension, 2009, 53, 1054-1061.	2.7	35
15	Novel role of sorting nexin 5 in renal D $\langle sub \rangle 1 \langle sub \rangle$ dopamine receptor trafficking and function: implications for hypertension. FASEB Journal, 2013, 27, 1808-1819.	0.5	34
16	G Protein-Coupled Receptor Kinase 4. Hypertension, 2015, 65, 1148-1155.	2.7	29
17	Human <i>GRK4γ</i> ^{<i>142V</i>} Variant Promotes Angiotensin II Type I Receptor–Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition. Hypertension, 2016, 67, 325-334.	2.7	28
18	Sorting Nexin 1 Loss Results in D5 Dopamine Receptor Dysfunction in Human Renal Proximal Tubule Cells and Hypertension in Mice. Journal of Biological Chemistry, 2013, 288, 152-163.	3.4	27

#	Article	IF	CITATIONS
19	H ₂ O ₂ Stimulation of the Cl ^{â^'} /HCO ₃ ^{â^'} Exchanger by Angiotensin II and Angiotensin II Type 1 Receptor Distribution in Membrane Microdomains. Hypertension, 2008, 51, 1332-1338.	2.7	26
20	<i>VEGF-A</i> and <i>VEGFR1</i> SNPs associate with preeclampsia in a Philippine population. Clinical and Experimental Hypertension, 2016, 38, 578-585.	1.3	26
21	Differential dopamine receptor subtype regulation of adenylyl cyclases in lipid rafts in human embryonic kidney and renal proximal tubule cells. Cellular Signalling, 2014, 26, 2521-2529.	3.6	25
22	G Protein–Coupled Receptor Kinases: Crucial Regulators of Blood Pressure. Journal of the American Heart Association, 2016, 5, .	3.7	25
23	G Protein–Coupled Receptor Kinase 4. Hypertension, 2008, 51, 1449-1455.	2.7	24
24	Dopamine D3 receptor inhibits the ubiquitinâ€specific peptidase 48 to promote NHE3 degradation. FASEB Journal, 2014, 28, 1422-1434.	0.5	23
25	Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxidants and Redox Signaling, 2021, 34, 716-735.	5.4	20
26	Insulin Increases D5 Dopamine Receptor Expression and Function in Renal Proximal Tubule Cells From Wistar-Kyoto Rats. American Journal of Hypertension, 2009, 22, 770-776.	2.0	19
27	Dopamine D1 receptor-mediated inhibition of NADPH oxidase activity in human kidney cells occurs via protein kinase A–protein kinase C cross talk. Free Radical Biology and Medicine, 2011, 50, 832-840.	2.9	19
28	Mechanisms of Fetal Programming in Hypertension. International Journal of Pediatrics (United) Tj ETQq0 0 0 rgB	T /Overloc	ck 10 Tf 50 38
29	Increased renal oxidative stress in salt-sensitive human GRK4 \hat{I}^3 486V transgenic mice. Free Radical Biology and Medicine, 2017, 106, 80-90.	2.9	18
30	Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. Pharmacogenomics Journal, 2019, 19, 315-336.	2.0	17
31	Loss of renal SNX5 results in impaired IDE activity and insulin resistance in mice. Diabetologia, 2018, 61, 727-737.	6.3	16
32	Genomics and Pharmacogenomics of Salt-sensitive Hypertension. Current Hypertension Reviews, 2015, 11, 49-56.	0.9	16
33	Sorting Nexin 5 and Dopamine D1 Receptor Regulate the Expression of the Insulin Receptor in Human Renal Proximal Tubule Cells. Endocrinology, 2015, 156, 2211-2221.	2.8	15
34	Role of $G\hat{l}\pm 12$ - and $G\hat{l}\pm 13$ -protein subunit linkage of D3 dopamine receptors in the natriuretic effect of D3 dopamine receptor in kidney. Hypertension Research, 2011, 34, 1011-1016.	2.7	13
35	Primary Pediatric Hypertension: Current Understanding and Emerging Concepts. Current Hypertension Reports, 2017, 19, 70.	3.5	12
36	Lipid rafts are required for effective renal D ₁ dopamine receptor function. FASEB Journal, 2020, 34, 6999-7017.	0.5	10

#	Article	IF	CITATIONS
37	Sorting nexin 1 loss results in increased oxidative stress and hypertension. FASEB Journal, 2020, 34, 7941-7957.	0.5	8
38	Dopamine D1-like receptors regulate the $\hat{l}\pm 1A$ -adrenergic receptor in human renal proximal tubule cells and D1-like dopamine receptor knockout mice. American Journal of Physiology - Renal Physiology, 2014, 307, F1238-F1248.	2.7	7
39	D ₁ -like dopamine receptors downregulate Na ⁺ -K ⁺ -ATPase activity and increase cAMP production in the posterior gills of the blue crab <i>Callinectes sapidus</i> American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R634-R642.	1.8	6
40	AT1R dysregulation is crucial in the hypertension of human GRK4 \hat{I}^3 A142V transgenic mice. FASEB Journal, 2009, 23, .	0.5	2
41	Elucidating the Role of Lipid Rafts on G Protein-Coupled Receptor Function in the Mouse Kidney: An In Vivo Approach. Methods in Molecular Biology, 2021, 2187, 187-206.	0.9	1
42	Genomics and pharmacogenomics of salt-sensitive hypertension Minireview. Current Hypertension Reviews, 2015, 11, 49-56.	0.9	1
43	Recent trends in pediatric hypertension research. Journal Medical Libanais, 2010, 58, 179-84.	0.0	1
44	NFAT5 Is Involved in GRP-Enhanced Secretion of GLP-1 by Sodium. International Journal of Molecular Sciences, 2021, 22, 3951.	4.1	0
45	Isolation of Lipid Rafts by the Detergent-Based and Non-detergent-Based Methods for Localization of GPCRs with Immunoblotting and Laser Scanning Confocal Microscopy. Methods in Molecular Biology, 2021, 2268, 1-20.	0.9	O
46	D5 dopamine receptor regulation of Cu/Zn SOD expression and activity in D5 receptor deficient mice. FASEB Journal, 2006, 20, A309.	0.5	0
47	Differential Regulation of NADPH Oxidase Activity in Lipid Rafts in Renal Proximal Tubule Cells from Rats and Humans. FASEB Journal, 2008, 22, 1210.11.	0.5	0
48	The Dopamine D1â€ike Receptors Interact with the α1A Adrenergic Receptor in Human Renal Epithelial Tubule Cells. FASEB Journal, 2011, 25, 1041.16.	0.5	0
49	Renal subcapsular infusion of siRNA as a novel method of gene silencing in the kidney. FASEB Journal, 2013, 27, 1217.30.	0.5	О