Guangyi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092591/publications.pdf

Version: 2024-02-01

		185998	197535
59	2,464 citations	28	49
papers	citations	h-index	g-index
62	62	62	1874
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie - International Edition, 2022, 61, .	7.2	1
2	Synthesis of renewable alkylated decalins with $\langle i \rangle p \langle i \rangle$ -quinone and 2-methyl-2,4-pentanediol. Sustainable Energy and Fuels, 2022, 6, 834-840.	2.5	5
3	Synthesis of jet fuel and diesel range cycloalkanes with 2-methylfuran and benzaldehyde. Sustainable Energy and Fuels, 2022, 6, 1156-1163.	2.5	4
4	Synthesis of jet fuel range high-density polycycloalkanes with vanillin and cyclohexanone. Sustainable Energy and Fuels, 2022, 6, 1616-1624.	2.5	6
5	Synthesis of jet fuel range polycyclic alkanes and aromatics from furfuryl alcohol and isoprene. Green Chemistry, 2022, 24, 3130-3136.	4.6	10
6	Synthesis of renewable aviation fuel additives with aromatic aldehydes and methyl isobutyl ketone under solvent-free conditions. Sustainable Energy and Fuels, 2021, 5, 556-563.	2.5	4
7	Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose. Nature Communications, 2021, 12, 46.	5.8	27
8	Synthesis of renewable alkylated naphthalenes with benzaldehyde and angelica lactone. Green Chemistry, 2021, 23, 5474-5480.	4.6	O
9	Direct Synthesis of Methylcyclopentadiene with 2,5-Hexanedione over Zinc Molybdates. ACS Catalysis, 2021, 11, 4810-4820.	5.5	19
10	Direct synthesis of a jet fuel range dicycloalkane by the aqueous phase hydrodeoxygenation of polycarbonate. Green Chemistry, 2021, 23, 3693-3699.	4.6	16
11	Direct synthesis of a high-density aviation fuel using a polycarbonate. Green Chemistry, 2021, 23, 912-919.	4.6	19
12	Synthesis of jet fuel range high-density dicycloalkanes with methyl benzaldehyde and acetone. Sustainable Energy and Fuels, 2020, 4, 5560-5567.	2.5	12
13	Sustainable Production of Safe Plasticizers with Bio-Based Fumarates and 1,3-Dienes. Industrial & Engineering Chemistry Research, 2020, 59, 7367-7374.	1.8	12
14	Making JPâ€10 Superfuel Affordable with a Lignocellulosic Platform Compound. Angewandte Chemie, 2019, 131, 12282-12286.	1.6	17
15	Synthesis of Diesel and Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural. Catalysts, 2019, 9, 886.	1.6	11
16	Synthesis of Decaline-Type Thermal-Stable Jet Fuel Additives with Cycloketones. ACS Sustainable Chemistry and Engineering, 2019, 7, 17354-17361.	3.2	21
17	Synthesis of jet fuel range high-density polycycloalkanes with polycarbonate waste. Green Chemistry, 2019, 21, 3789-3795.	4.6	30
18	Making JPâ€10 Superfuel Affordable with a Lignocellulosic Platform Compound. Angewandte Chemie - International Edition, 2019, 58, 12154-12158.	7.2	78

#	Article	IF	Citations
19	Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste. Green Chemistry, 2019, 21, 2709-2719.	4.6	61
20	Integrated Conversion of Cellulose to High-Density Aviation Fuel. Joule, 2019, 3, 1028-1036.	11.7	113
21	Production of 1,2-Cyclohexanedicarboxylates from Diacetone Alcohol and Fumarates. ACS Sustainable Chemistry and Engineering, 2019, 7, 2980-2988.	3.2	10
22	Synthesis of jet fuel additive with cyclopentanone. Journal of Energy Chemistry, 2019, 29, 23-30.	7.1	19
23	Dehydration of Carbohydrates to 5-Hydroxymethylfurfural over Lignosulfonate-Based Acidic Resin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5645-5652.	3.2	30
24	Synthesis of 1,4â€Cyclohexanedimethanol, 1,4â€Cyclohexanedicarboxylic Acid and 1,2â€Cyclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie, 2018, 130, 7017-7021.	1.6	22
25	Synthesis of 1,4â€Cyclohexanedimethanol, 1,4â€Cyclohexanedicarboxylic Acid and 1,2â€Cyclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie - International Edition, 2018, 57, 6901-6905.	7.2	26
26	Synthesis of Renewable C ₈ –C ₁₀ Alkanes with Angelica Lactone and Furfural from Carbohydrates. ACS Sustainable Chemistry and Engineering, 2018, 6, 6126-6134.	3.2	29
27	Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups. Catalysts, 2018, 8, 14.	1.6	40
28	Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone. Green Chemistry, 2018, 20, 3753-3760.	4.6	29
29	Synthesis of Renewable High-Density Fuel with Cyclopentanone Derived from Hemicellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 1812-1817.	3.2	60
30	Sustainable production of pyromellitic acid with pinacol and diethyl maleate. Green Chemistry, 2017, 19, 1663-1667.	4.6	21
31	Solid Acid-Catalyzed Dehydration of Pinacol Derivatives in Ionic Liquid: Simple and Efficient Access to Branched 1,3-Dienes. ACS Catalysis, 2017, 7, 2576-2582.	5.5	16
32	Sustainable Production of <i>>o</i> â€Xylene from Biomassâ€Derived Pinacol and Acrolein. ChemSusChem, 2017, 10, 2880-2885.	3.6	18
33	Highly efficient synthesis of 5-hydroxymethylfurfural with carbohydrates over renewable cyclopentanone-based acidic resin. Green Chemistry, 2017, 19, 1855-1860.	4.6	35
34	Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dualâ∈Bed Catalyst Systems. ChemSusChem, 2017, 10, 825-829.	3.6	12
35	Synthesis of Diesel and Jet Fuel Range Alkanes with Furfural and Angelica Lactone. ACS Catalysis, 2017, 7, 5880-5886.	5.5	85
36	Synthesis of renewable high-density fuel with isophorone. Scientific Reports, 2017, 7, 6111.	1.6	23

#	Article	IF	Citations
37	Synthesis of jet fuel rang cycloalkane from isophorone with glycerol as a renewable hydrogen source. Catalysis Today, 2017, 298, 16-20.	2.2	13
38	Dualâ€bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose. AICHE Journal, 2016, 62, 2754-2761.	1.8	44
39	Direct synthesis of gasoline and diesel range branched alkanes with acetone from lignocellulose. Green Chemistry, 2016, 18, 3707-3711.	4.6	33
40	Synthesis of High-Density Aviation Fuel with Cyclopentanol. ACS Sustainable Chemistry and Engineering, 2016, 4, 6160-6166.	3.2	50
41	Synthesis of jet fuel range cycloalkanes with diacetone alcohol from lignocellulose. Green Chemistry, 2016, 18, 5751-5755.	4.6	41
42	Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates. Green Chemistry, 2016, 18, 1218-1223.	4.6	32
43	Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose. Green Chemistry, 2016, 18, 3607-3613.	4.6	37
44	Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose. Scientific Reports, 2015, 5, 9565.	1.6	60
45	Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Applied Catalysis B: Environmental, 2015, 170-171, 124-134.	10.8	55
46	Lignosulfonate-based acidic resin for the synthesis of renewable diesel and jet fuel range alkanes with 2-methylfuran and furfural. Green Chemistry, 2015, 17, 3644-3652.	4.6	73
47	Aqueous phase hydrogenation of acetic acid to ethanol over Ir-MoOx/SiO2 catalyst. Catalysis Communications, 2014, 43, 38-41.	1.6	57
48	Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose. Catalysis Today, 2014, 234, 91-99.	2.2	39
49	Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol. Chemical Communications, 2014, 50, 1414.	2.2	136
50	Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/H \hat{l}^2 under mild conditions. Green Chemistry, 2014, 16, 594-599.	4.6	79
51	Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose. Chemical Communications, 2014, 50, 2572.	2.2	143
52	Synthesis of Diesel or Jet Fuel Range Cycloalkanes with 2-Methylfuran and Cyclopentanone from Lignocellulose. Energy & Diesels, 2014, 28, 5112-5118.	2.5	104
53	Production of Renewable Jet Fuel Range Branched Alkanes with Xylose and Methyl Isobutyl Ketone. Industrial & Description of Renewable Jet Fuel Range Branched Alkanes with Xylose and Methyl Isobutyl Ketone.	1.8	36
54	Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose. Bioresource Technology, 2013, 134, 66-72.	4.8	88

Guangyi Li

#	Article	lF	CITATIONS
55	Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan. Chemical Communications, 2013, 49, 5727.	2.2	116
56	Solventâ€Free Synthesis of C ₁₀ and C ₁₁ Branched Alkanes from Furfural and Methyl Isobutyl Ketone. ChemSusChem, 2013, 6, 1149-1152.	3.6	107
57	Synthesis of Highâ€Quality Diesel with Furfural and 2â€Methylfuran from Hemicellulose. ChemSusChem, 2012, 5, 1958-1966.	3.6	177
58	Synthesis of Branched Octahydro-Indene with Methyl Benzaldehyde and Methyl Isobutyl Ketone. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	1
59	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie, 0, , .	1.6	0