Guangyi Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1092591/guangyi-li-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56	1,828	25	42
papers	citations	h-index	g-index
62	2,141 ext. citations	8.8	4.68
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
56	Synthesis of jet fuel range high-density polycycloalkanes with vanillin and cyclohexanone. Sustainable Energy and Fuels, 2022 , 6, 1616-1624	5.8	1
55	Direct Synthesis of Methylcyclopentadiene with 2,5-Hexanedione over Zinc Molybdates. <i>ACS Catalysis</i> , 2021 , 11, 4810-4820	13.1	9
54	Synthesis of renewable aviation fuel additives with aromatic aldehydes and methyl isobutyl ketone under solvent-free conditions. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 556-563	5.8	1
53	Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose. <i>Nature Communications</i> , 2021 , 12, 46	17.4	15
52	Synthesis of renewable alkylated naphthalenes with benzaldehyde and angelica lactone. <i>Green Chemistry</i> , 2021 , 23, 5474-5480	10	
51	Direct synthesis of a jet fuel range dicycloalkane by the aqueous phase hydrodeoxygenation of polycarbonate. <i>Green Chemistry</i> , 2021 , 23, 3693-3699	10	3
50	Direct synthesis of a high-density aviation fuel using a polycarbonate. <i>Green Chemistry</i> , 2021 , 23, 912-91	190	7
49	Sustainable Production of Safe Plasticizers with Bio-Based Fumarates and 1,3-Dienes. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 7367-7374	3.9	7
48	Synthesis of jet fuel range high-density dicycloalkanes with methyl benzaldehyde and acetone. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5560-5567	5.8	6
47	Synthesis of Diesel and Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural. <i>Catalysts</i> , 2019 , 9, 886	4	7
46	Synthesis of Decaline-Type Thermal-Stable Jet Fuel Additives with Cycloketones. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 17354-17361	8.3	11
45	Synthesis of jet fuel range high-density polycycloalkanes with polycarbonate waste. <i>Green Chemistry</i> , 2019 , 21, 3789-3795	10	16
44	Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12154-12158	16.4	45
43	Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste. <i>Green Chemistry</i> , 2019 , 21, 2709-2719	10	20
42	Integrated Conversion of Cellulose to High-Density Aviation Fuel. <i>Joule</i> , 2019 , 3, 1028-1036	27.8	67
41	Making JP-10 Superfuel Affordable with a Lignocellulosic Platform Compound. <i>Angewandte Chemie</i> , 2019 , 131, 12282-12286	3.6	11
40	Production of 1,2-Cyclohexanedicarboxylates from Diacetone Alcohol and Fumarates. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 2980-2988	8.3	8

39	Synthesis of jet fuel additive with cyclopentanone. <i>Journal of Energy Chemistry</i> , 2019 , 29, 23-30	12	11
38	Dehydration of Carbohydrates to 5-Hydroxymethylfurfural over Lignosulfonate-Based Acidic Resin. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5645-5652	8.3	21
37	Synthesis of 1,4-Cyclohexanedimethanol, 1,4-Cyclohexanedicarboxylic Acid and 1,2-Cyclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. <i>Angewandte Chemie</i> , 2018 , 130, 7017-7021	3.6	2
36	Synthesis of 1,4-Cyclohexanedimethanol, 1,4-Cyclohexanedicarboxylic Acid and 1,2-Cyclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6901-6905	16.4	16
35	Synthesis of Renewable C8L10 Alkanes with Angelica Lactone and Furfural from Carbohydrates. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 6126-6134	8.3	22
34	Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups. <i>Catalysts</i> , 2018 , 8, 14	4	29
33	Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone. <i>Green Chemistry</i> , 2018 , 20, 3753-3760	10	18
32	Synthesis of Renewable High-Density Fuel with Cyclopentanone Derived from Hemicellulose. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1812-1817	8.3	45
31	Sustainable production of pyromellitic acid with pinacol and diethyl maleate. <i>Green Chemistry</i> , 2017 , 19, 1663-1667	10	16
30	Solid Acid-Catalyzed Dehydration of Pinacol Derivatives in Ionic Liquid: Simple and Efficient Access to Branched 1,3-Dienes. <i>ACS Catalysis</i> , 2017 , 7, 2576-2582	13.1	11
29	Sustainable Production of o-Xylene from Biomass-Derived Pinacol and Acrolein. <i>ChemSusChem</i> , 2017 , 10, 2880-2885	8.3	14
28	Highly efficient synthesis of 5-hydroxymethylfurfural with carbohydrates over renewable cyclopentanone-based acidic resin. <i>Green Chemistry</i> , 2017 , 19, 1855-1860	10	30
27	Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dual-Bed Catalyst Systems. <i>ChemSusChem</i> , 2017 , 10, 825-829	8.3	11
26	Activated Carbon and Ordered Mesoporous Carbon-Based Catalysts for Biomass Conversion 2017 , 17-5	54	2
25	Synthesis of Diesel and Jet Fuel Range Alkanes with Furfural and Angelica Lactone. <i>ACS Catalysis</i> , 2017 , 7, 5880-5886	13.1	68
24	Synthesis of renewable high-density fuel with isophorone. <i>Scientific Reports</i> , 2017 , 7, 6111	4.9	17
23	Synthesis of jet fuel rang cycloalkane from isophorone with glycerol as a renewable hydrogen source. <i>Catalysis Today</i> , 2017 , 298, 16-20	5.3	11
22	Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates. <i>Green Chemistry</i> , 2016 , 18, 1218-1223	10	22

21	Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose. <i>Green Chemistry</i> , 2016 , 18, 3607-3613	10	31
20	Dual-bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose. <i>AICHE Journal</i> , 2016 , 62, 2754-2761	3.6	33
19	Direct synthesis of gasoline and diesel range branched alkanes with acetone from lignocellulose. <i>Green Chemistry</i> , 2016 , 18, 3707-3711	10	28
18	Synthesis of High-Density Aviation Fuel with Cyclopentanol. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 6160-6166	8.3	38
17	Synthesis of jet fuel range cycloalkanes with diacetone alcohol from lignocellulose. <i>Green Chemistry</i> , 2016 , 18, 5751-5755	10	28
16	Lignosulfonate-based acidic resin for the synthesis of renewable diesel and jet fuel range alkanes with 2-methylfuran and furfural. <i>Green Chemistry</i> , 2015 , 17, 3644-3652	10	58
15	Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose. <i>Scientific Reports</i> , 2015 , 5, 9565	4.9	52
14	Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. <i>Applied Catalysis B: Environmental</i> , 2015 , 170-171, 124-134	21.8	42
13	Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose. <i>Catalysis Today</i> , 2014 , 234, 91-99	5.3	35
12	Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol. <i>Chemical Communications</i> , 2014 , 50, 1414-6	5.8	109
11	Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hlunder mild conditions. <i>Green Chemistry</i> , 2014 , 16, 594-599	10	67
10	Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose. <i>Chemical Communications</i> , 2014 , 50, 2572-4	5.8	121
9	Synthesis of Diesel or Jet Fuel Range Cycloalkanes with 2-Methylfuran and Cyclopentanone from Lignocellulose. <i>Energy & Diesels</i> , 2014, 28, 5112-5118	4.1	83
8	Production of Renewable Jet Fuel Range Branched Alkanes with Xylose and Methyl Isobutyl Ketone. <i>Industrial & Description of the State of Chemistry Research</i> , 2014 , 53, 13618-13625	3.9	32
7	Aqueous phase hydrogenation of acetic acid to ethanol over Ir-MoOx/SiO2 catalyst. <i>Catalysis Communications</i> , 2014 , 43, 38-41	3.2	47
6	Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose. <i>Bioresource Technology</i> , 2013 , 134, 66-72	11	76
5	Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan. <i>Chemical Communications</i> , 2013 , 49, 5727-9	5.8	102
4	Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone. <i>ChemSusChem</i> , 2013 , 6, 1149-52	8.3	91

LIST OF PUBLICATIONS

3	Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose. <i>ChemSusChem</i> , 2012 , 5, 1958-66	8.3	152
2	Synthesis of jet fuel and diesel range cycloalkanes with 2-methylfuran and benzaldehyde. Sustainable Energy and Fuels,	5.8	1
1	Production of Copolyester Monomers from Plant-Based Acrylate and Acetaldehyde. <i>Angewandte Chemie</i> ,	3.6	