
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092591/publications.pdf Version: 2024-02-01

GUANCYLLI

#	Article	IF	CITATIONS
1	Synthesis of Highâ€Quality Diesel with Furfural and 2â€Methylfuran from Hemicellulose. ChemSusChem, 2012, 5, 1958-1966.	6.8	177
2	Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose. Chemical Communications, 2014, 50, 2572.	4.1	143
3	Aqueous phase hydrogenation of levulinic acid to 1,4-pentanediol. Chemical Communications, 2014, 50, 1414.	4.1	136
4	Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan. Chemical Communications, 2013, 49, 5727.	4.1	116
5	Integrated Conversion of Cellulose to High-Density Aviation Fuel. Joule, 2019, 3, 1028-1036.	24.0	113
6	Solventâ€Free Synthesis of C ₁₀ and C ₁₁ Branched Alkanes from Furfural and Methyl Isobutyl Ketone. ChemSusChem, 2013, 6, 1149-1152.	6.8	107
7	Synthesis of Diesel or Jet Fuel Range Cycloalkanes with 2-Methylfuran and Cyclopentanone from Lignocellulose. Energy & Fuels, 2014, 28, 5112-5118.	5.1	104
8	Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose. Bioresource Technology, 2013, 134, 66-72.	9.6	88
9	Synthesis of Diesel and Jet Fuel Range Alkanes with Furfural and Angelica Lactone. ACS Catalysis, 2017, 7, 5880-5886.	11.2	85
10	Synthesis of renewable diesel range alkanes by hydrodeoxygenation of furans over Ni/Hβ under mild conditions. Green Chemistry, 2014, 16, 594-599.	9.0	79
11	Making JPâ€10 Superfuel Affordable with a Lignocellulosic Platform Compound. Angewandte Chemie - International Edition, 2019, 58, 12154-12158.	13.8	78
12	Lignosulfonate-based acidic resin for the synthesis of renewable diesel and jet fuel range alkanes with 2-methylfuran and furfural. Green Chemistry, 2015, 17, 3644-3652.	9.0	73
13	Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste. Green Chemistry, 2019, 21, 2709-2719.	9.0	61
14	Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose. Scientific Reports, 2015, 5, 9565.	3.3	60
15	Synthesis of Renewable High-Density Fuel with Cyclopentanone Derived from Hemicellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 1812-1817.	6.7	60
16	Aqueous phase hydrogenation of acetic acid to ethanol over Ir-MoOx/SiO2 catalyst. Catalysis Communications, 2014, 43, 38-41.	3.3	57
17	Protonated titanate nanotubes as a highly active catalyst for the synthesis of renewable diesel and jet fuel range alkanes. Applied Catalysis B: Environmental, 2015, 170-171, 124-134.	20.2	55
18	Synthesis of High-Density Aviation Fuel with Cyclopentanol. ACS Sustainable Chemistry and Engineering, 2016, 4, 6160-6166.	6.7	50

#	Article	IF	CITATIONS
19	Dualâ€bed catalyst system for the direct synthesis of high density aviation fuel with cyclopentanone from lignocellulose. AICHE Journal, 2016, 62, 2754-2761.	3.6	44
20	Synthesis of jet fuel range cycloalkanes with diacetone alcohol from lignocellulose. Green Chemistry, 2016, 18, 5751-5755.	9.0	41
21	Efficient Production of N-Butyl Levulinate Fuel Additive from Levulinic Acid Using Amorphous Carbon Enriched with Oxygenated Groups. Catalysts, 2018, 8, 14.	3.5	40
22	Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose. Catalysis Today, 2014, 234, 91-99.	4.4	39
23	Industrially scalable and cost-effective synthesis of 1,3-cyclopentanediol with furfuryl alcohol from lignocellulose. Green Chemistry, 2016, 18, 3607-3613.	9.0	37
24	Production of Renewable Jet Fuel Range Branched Alkanes with Xylose and Methyl Isobutyl Ketone. Industrial & Engineering Chemistry Research, 2014, 53, 13618-13625.	3.7	36
25	Highly efficient synthesis of 5-hydroxymethylfurfural with carbohydrates over renewable cyclopentanone-based acidic resin. Green Chemistry, 2017, 19, 1855-1860.	9.0	35
26	Direct synthesis of gasoline and diesel range branched alkanes with acetone from lignocellulose. Green Chemistry, 2016, 18, 3707-3711.	9.0	33
27	Synthesis of renewable diesel with 2-methylfuran and angelica lactone derived from carbohydrates. Green Chemistry, 2016, 18, 1218-1223.	9.0	32
28	Dehydration of Carbohydrates to 5-Hydroxymethylfurfural over Lignosulfonate-Based Acidic Resin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5645-5652.	6.7	30
29	Synthesis of jet fuel range high-density polycycloalkanes with polycarbonate waste. Green Chemistry, 2019, 21, 3789-3795.	9.0	30
30	Synthesis of Renewable C ₈ –C ₁₀ Alkanes with Angelica Lactone and Furfural from Carbohydrates. ACS Sustainable Chemistry and Engineering, 2018, 6, 6126-6134.	6.7	29
31	Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone. Green Chemistry, 2018, 20, 3753-3760.	9.0	29
32	Synthesis of bio-based methylcyclopentadiene via direct hydrodeoxygenation of 3-methylcyclopent-2-enone derived from cellulose. Nature Communications, 2021, 12, 46.	12.8	27
33	Synthesis of 1,4 yclohexanedimethanol, 1,4 yclohexanedicarboxylic Acid and 1,2 yclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie - International Edition, 2018, 57, 6901-6905.	13.8	26
34	Synthesis of renewable high-density fuel with isophorone. Scientific Reports, 2017, 7, 6111.	3.3	23
35	Synthesis of 1,4 yclohexanedimethanol, 1,4 yclohexanedicarboxylic Acid and 1,2 yclohexanedicarboxylates from Formaldehyde, Crotonaldehyde and Acrylate/Fumarate. Angewandte Chemie, 2018, 130, 7017-7021.	2.0	22
36	Sustainable production of pyromellitic acid with pinacol and diethyl maleate. Green Chemistry, 2017, 19, 1663-1667.	9.0	21

#	Article	IF	CITATIONS
37	Synthesis of Decaline-Type Thermal-Stable Jet Fuel Additives with Cycloketones. ACS Sustainable Chemistry and Engineering, 2019, 7, 17354-17361.	6.7	21
38	Synthesis of jet fuel additive with cyclopentanone. Journal of Energy Chemistry, 2019, 29, 23-30.	12.9	19
39	Direct Synthesis of Methylcyclopentadiene with 2,5-Hexanedione over Zinc Molybdates. ACS Catalysis, 2021, 11, 4810-4820.	11.2	19
40	Direct synthesis of a high-density aviation fuel using a polycarbonate. Green Chemistry, 2021, 23, 912-919.	9.0	19
41	Sustainable Production of <i>o</i> â€Xylene from Biomassâ€Đerived Pinacol and Acrolein. ChemSusChem, 2017, 10, 2880-2885.	6.8	18
42	Making JPâ€10 Superfuel Affordable with a Lignocellulosic Platform Compound. Angewandte Chemie, 2019, 131, 12282-12286.	2.0	17
43	Solid Acid-Catalyzed Dehydration of Pinacol Derivatives in Ionic Liquid: Simple and Efficient Access to Branched 1,3-Dienes. ACS Catalysis, 2017, 7, 2576-2582.	11.2	16
44	Direct synthesis of a jet fuel range dicycloalkane by the aqueous phase hydrodeoxygenation of polycarbonate. Green Chemistry, 2021, 23, 3693-3699.	9.0	16
45	Synthesis of jet fuel rang cycloalkane from isophorone with glycerol as a renewable hydrogen source. Catalysis Today, 2017, 298, 16-20.	4.4	13
46	Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dualâ€Bed Catalyst Systems. ChemSusChem, 2017, 10, 825-829.	6.8	12
47	Synthesis of jet fuel range high-density dicycloalkanes with methyl benzaldehyde and acetone. Sustainable Energy and Fuels, 2020, 4, 5560-5567.	4.9	12
48	Sustainable Production of Safe Plasticizers with Bio-Based Fumarates and 1,3-Dienes. Industrial & Engineering Chemistry Research, 2020, 59, 7367-7374.	3.7	12
49	Synthesis of Diesel and Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural. Catalysts, 2019, 9, 886.	3.5	11
50	Production of 1,2-Cyclohexanedicarboxylates from Diacetone Alcohol and Fumarates. ACS Sustainable Chemistry and Engineering, 2019, 7, 2980-2988.	6.7	10
51	Synthesis of jet fuel range polycyclic alkanes and aromatics from furfuryl alcohol and isoprene. Green Chemistry, 2022, 24, 3130-3136.	9.0	10
52	Synthesis of jet fuel range high-density polycycloalkanes with vanillin and cyclohexanone. Sustainable Energy and Fuels, 2022, 6, 1616-1624.	4.9	6
53	Synthesis of renewable alkylated decalins with <i>p</i> -quinone and 2-methyl-2,4-pentanediol. Sustainable Energy and Fuels, 2022, 6, 834-840.	4.9	5
54	Synthesis of renewable aviation fuel additives with aromatic aldehydes and methyl isobutyl ketone under solvent-free conditions. Sustainable Energy and Fuels, 2021, 5, 556-563.	4.9	4

#	Article	IF	CITATIONS
55	Synthesis of jet fuel and diesel range cycloalkanes with 2-methylfuran and benzaldehyde. Sustainable Energy and Fuels, 2022, 6, 1156-1163.	4.9	4
56	Synthesis of Branched Octahydro-Indene with Methyl Benzaldehyde and Methyl Isobutyl Ketone. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	1
57	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie - International Edition, 2022, 61, .	13.8	1
58	Synthesis of renewable alkylated naphthalenes with benzaldehyde and angelica lactone. Green Chemistry, 2021, 23, 5474-5480.	9.0	0
59	Production of Copolyester Monomers from Plantâ€Based Acrylate and Acetaldehyde. Angewandte Chemie, 0, , .	2.0	0