John Cleary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092449/publications.pdf

Version: 2024-02-01

516710 713466 29 961 16 21 h-index citations g-index papers 29 29 29 1219 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources, 2018, 7, 57.	3.5	182
2	Chromium Monitoring in Water by Colorimetry Using Optimised 1,5-Diphenylcarbazide Method. International Journal of Environmental Research and Public Health, 2019, 16, 1803.	2.6	124
3	SmartCoast: A Wireless Sensor Network for Water Quality Monitoring. , 2007, , .		67
4	Autonomous microfluidic system for phosphate detection. Talanta, 2007, 71, 1180-1185.	5 . 5	66
5	Adhesion of Polyether-Modified Poly(acrylic acid) to Mucin. Langmuir, 2004, 20, 9755-9762.	3.5	62
6	Integration of analytical measurements and wireless communications—Current issues and future strategies. Talanta, 2008, 75, 606-612.	5 . 5	58
7	An Autonomous Microfluidic Sensor for Phosphate: On-Site Analysis of Treated Wastewater. IEEE Sensors Journal, 2008, 8, 508-515.	4.7	45
8	The development of an autonomous sensing platform for the monitoring of ammonia in water using a simplified Berthelot method. Analytical Methods, 2014, 6, 7606-7614.	2.7	44
9	Autonomous reagent-based microfluidic pH sensor platform. Sensors and Actuators B: Chemical, 2016, 225, 369-376.	7.8	39
10	Development of a low cost microfluidic sensor for the direct determination of nitrate using chromotropic acid in natural waters. Analytical Methods, 2015, 7, 5396-5405.	2.7	35
11	A Review of Microfluidic Detection Strategies for Heavy Metals in Water. Chemosensors, 2021, 9, 60.	3.6	33
12	Lithium in the Natural Waters of the South East of Ireland. International Journal of Environmental Research and Public Health, 2017, 14, 561.	2.6	31
13	Diffusion and Release of Solutes in Pluronic-g-poly(acrylic acid) Hydrogels. Langmuir, 2003, 19, 9162-9172.	3.5	28
14	Arsenic Monitoring in Water by Colorimetry Using an Optimized Leucomalachite Green Method. Molecules, 2019, 24, 339.	3.8	23
15	Integrated flow analysis platform for the direct detection of nitrate in water using a simplified chromotropic acid method. Analytical Methods, 2013, 5, 4798.	2.7	22
16	Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics. Sensors, 2016, 16, 1402.	3.8	21
17	Induced Plant Accumulation of Lithium. Geosciences (Switzerland), 2018, 8, 56.	2.2	20
18	Arsenic detection in water using microfluidic detection systems based on the leucomalachite green method. Analytical Methods, 2019, 11, 5431-5438.	2.7	11

#	Article	IF	CITATIONS
19	Autonomous field-deployable device for the measurement of phosphate in natural water. , 2007, , .		10
20	In situ monitoring of environmental water quality using an autonomous microfluidic sensor. , 2010, , .		10
21	Association of Potential Human Pathogens with Microplastics in Freshwater Systems. Springer Water, 2020, , 112-120.	0.3	8
22	Assessment of microplastics in Irish river sediment. Heliyon, 2022, 8, e09853.	3.2	7
23	Field-deployable microfluidic sensor for phosphate in natural waters. , 2007, , .		3
24	Autonomous analyser platforms for remote monitoring of water quality., 2011,,.		3
25	Distributed Environmental Monitoring. Springer Series on Chemical Sensors and Biosensors, 2012, , 321-363.	0.5	3
26	COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements. , 2014, , .		3
27	Biomimetics and materials with multiple personalities - The foundation of next generation molecular sensing devices. , 2010, , .		2
28	Cost-Effective Sensors, Interoperable With International Existing Ocean Observing Systems, To Meet EU Policies Requirements. International Journal on Smart Sensing and Intelligent Systems, 2014, 7, 1-6.	0.7	1
29	Intelligent Environmental Sensing with a Phosphate Monitoring System and Online Resources. AIP Conference Proceedings, 2007, , .	0.4	O