
## Shin Mou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109244/publications.pdf Version: 2024-02-01



**СНИМ МОЦ** 

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3<br>heterostructures. Applied Physics Letters, 2018, 112, .                                                                     | 3.3 | 264       |
| 2  | Donors and deep acceptors in $\hat{l}^2$ -Ga2O3. Applied Physics Letters, 2018, 113, .                                                                                                                                        | 3.3 | 203       |
| 3  | β-Gallium oxide power electronics. APL Materials, 2022, 10, .                                                                                                                                                                 | 5.1 | 184       |
| 4  | Ge-Doped \${eta }\$ -Ga2O3 MOSFETs. IEEE Electron Device Letters, 2017, 38, 775-778.                                                                                                                                          | 3.9 | 165       |
| 5  | Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor<br>deposition. Applied Physics Letters, 2016, 109, .                                                                          | 3.3 | 122       |
| 6  | Lateral β-Ga <sub>2</sub> O <sub>3</sub> field effect transistors. Semiconductor Science and Technology, 2020, 35, 013002.                                                                                                    | 2.0 | 85        |
| 7  | Incomplete Ionization of a 110 meV Unintentional Donor in β-Ga2O3 and its Effect on Power Devices.<br>Scientific Reports, 2017, 7, 13218.                                                                                     | 3.3 | 84        |
| 8  | Towards Highâ€Mobility Heteroepitaxial βâ€Ga <sub>2</sub> O <sub>3</sub> on Sapphire â^' Dependence on<br>The Substrate Offâ€Axis Angle. Physica Status Solidi (A) Applications and Materials Science, 2018, 215,<br>1700467. | 1.8 | 84        |
| 9  | MOCVD growth of high purity Ga2O3 epitaxial films using trimethylgallium precursor. Applied Physics<br>Letters, 2020, 117, .                                                                                                  | 3.3 | 77        |
| 10 | Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy. APL Materials, 2021, 9, .                                                                                                                           | 5.1 | 38        |
| 11 | Pulsed Power Performance of <i>β</i> -Gaâ,,Oâ,ƒ MOSFETs at L-Band. IEEE Electron Device Letters, 2020, 41, 989-992.                                                                                                           | 3.9 | 32        |
| 12 | Toward high voltage radio frequency devices in <i><math>\hat{l}^2</math></i> -Ga2O3. Applied Physics Letters, 2020, 117, .                                                                                                    | 3.3 | 23        |
| 13 | <i>γ</i> -phase inclusions as common structural defects in alloyed <i>β</i> -(Al <i>x</i> Ga1â^' <i>x</i> )2O3<br>and doped <i>β</i> -Ga2O3 films. APL Materials, 2021, 9, .                                                  | 5.1 | 23        |
| 14 | Reduction of unintentional Si doping in β-Ga2O3 grown via plasma-assisted molecular beam epitaxy.<br>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 043403.                                | 2.1 | 20        |
| 15 | β-Ga <sub>2</sub> O <sub>3</sub> defect study by steady-state capacitance spectroscopy. Japanese<br>Journal of Applied Physics, 2018, 57, 091101.                                                                             | 1.5 | 17        |
| 16 | Si doping in MOCVD grown (010) β-(AlxGa1â^'x)2O3 thin films. Journal of Applied Physics, 2022, 131, .                                                                                                                         | 2.5 | 15        |
| 17 | Edge Doping Effect to the Surface Plasmon Resonances in Graphene Nanoribbons. Journal of Physical<br>Chemistry C, 2019, 123, 19820-19827.                                                                                     | 3.1 | 8         |
| 18 | Microwave imaging of etching-induced surface impedance modulation of graphene monolayer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 05G508.                                            | 2.1 | 3         |

**Shin Mou** 

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Study of defects in β-Ga2O3 by isothermal capacitance transient spectroscopy. Journal of Vacuum<br>Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 041204.                    | 1.2 | 3         |
| 20 | Tailoring the Potential Landscape and Electrical Properties of 2D MoS <sub>2</sub> using Gold<br>Nanostructures of Different Coverage Density. Journal of Physical Chemistry C, 2020, 124, 6461-6466. | 3.1 | 3         |
| 21 | Zeeman spin-splitting in the (010) β-Ga2O3 two-dimensional electron gas. Applied Physics Letters, 2019, 115, .                                                                                        | 3.3 | 1         |
| 22 | Electrical Properties 1. Springer Series in Materials Science, 2020, , 389-405.                                                                                                                       | 0.6 | 0         |