Lowell E Gentry

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/10924195/lowell-e-gentry-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

31	1,997	22	31
papers	citations	h-index	g-index
31	2,198 ext. citations	3.9	4.6
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
31	Assessing the impacts of pre-growing-season weather conditions on soil nitrogen dynamics and corn productivity in the U.S. Midwest. <i>Field Crops Research</i> , 2022 , 284, 108563	5.5	Ο
30	Closed depressions and soil phosphorus influence subsurface phosphorus losses in a tile-drained field in Illinois. <i>Journal of Environmental Quality</i> , 2020 , 49, 1273-1285	3.4	2
29	Compost Legacy Down-Regulates Biological Nitrogen Fixation in a Long-Term Field Experiment. <i>Agronomy Journal</i> , 2017 , 109, 2662-2669	2.2	8
28	Fate of water and nitrate using drainage water management on tile systems in east-central Illinois. <i>Agricultural Water Management</i> , 2017 , 191, 218-228	5.9	13
27	Riverine Response of Sulfate to Declining Atmospheric Sulfur Deposition in Agricultural Watersheds. <i>Journal of Environmental Quality</i> , 2016 , 45, 1313-9	3.4	17
26	Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds. <i>Journal of Environmental Quality</i> , 2016 , 45, 341-8	3.4	13
25	Temperature and Substrate Control Woodchip Bioreactor Performance in Reducing Tile Nitrate Loads in East-Central Illinois. <i>Journal of Environmental Quality</i> , 2016 , 45, 822-9	3.4	46
24	Navigating the socio-bio-geo-chemistry and engineering of nitrogen management in two illinois tile-drained watersheds. <i>Journal of Environmental Quality</i> , 2015 , 44, 368-81	3.4	28
23	Nitrogen removal and greenhouse gas emissions from constructed wetlands receiving tile drainage water. <i>Journal of Environmental Quality</i> , 2015 , 44, 1001-10	3.4	40
22	Variation in riverine nitrate flux and fall nitrogen fertilizer application in East-central illinois. <i>Journal of Environmental Quality</i> , 2014 , 43, 1467-74	3.4	22
21	Biophysical and social barriers restrict water quality improvements in the Mississippi River Basin. <i>Environmental Science & Environmental Science & E</i>	10.3	8
20	Short- and Long-Term Labile Soil Carbon and Nitrogen Dynamics Reflect Management and Predict Corn Agronomic Performance. <i>Agronomy Journal</i> , 2013 , 105, 493-502	2.2	108
19	Apparent Red Clover Nitrogen Credit to Corn: Evaluating Cover Crop Introduction. <i>Agronomy Journal</i> , 2013 , 105, 1658-1664	2.2	27
18	Use of N immobilization to tighten the N cycle in conventional agroecosystems 2010 , 20, 648-62		49
17	Management intensity [hot biodiversity [the driver of ecosystem services in a long-term row crop experiment. <i>Agriculture, Ecosystems and Environment</i> , 2010 , 138, 242-248	5.7	51
16	Nitrogen mass balance of a tile-drained agricultural watershed in East-Central Illinois. <i>Journal of Environmental Quality</i> , 2009 , 38, 1841-7	3.4	75
15	Assessment of chlorophyll-a as a criterion for establishing nutrient standards in the streams and rivers of Illinois. <i>Journal of Environmental Quality</i> , 2008 , 37, 437-47	3.4	36

LIST OF PUBLICATIONS

14	Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois: implications for reducing nutrient loading to the Mississippi River. <i>Environmental Science & Eamp; Technology</i> , 2006 , 40, 4126-31	10.3	298
13	Relationships among nutrients, chlorophyll-a, and dissolved oxygen in agricultural streams in Illinois. <i>Journal of Environmental Quality</i> , 2006 , 35, 1110-7	3.4	40
12	Stream transport of herbicides and metabolites in a tile-drained, agricultural watershed. <i>Journal of Environmental Quality</i> , 2003 , 32, 1790-801	3.4	27
11	Plant Nutrient Uptake and Biomass Accumulation in a Constructed Wetland. <i>Journal of Freshwater Ecology</i> , 2001 , 16, 527-540	1.4	35
10	Estimated historical and current nitrogen balances for Illinois. <i>Scientific World Journal, The</i> , 2001 , 1 Suppl 2, 597-604	2.2	19
9	Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage. <i>Journal of Environmental Quality</i> , 2000 , 29, 1262-1274	3.4	224
8	The role of seepage in constructed wetlands receiving agricultural tile drainage. <i>Ecological Engineering</i> , 2000 , 15, 91-104	3.9	34
7	Anthropogenic Inputs of Nitrogen and Phosphorus and Riverine Export for Illinois, USA. <i>Journal of Environmental Quality</i> , 2000 , 29, 494-508	3.4	198
6	Nitrogen Fertilizer and Herbicide Transport from Tile Drained Fields. <i>Journal of Environmental Quality</i> , 2000 , 29, 232-240	3.4	57
5	In Situ Measurements of Denitrification in Constructed Wetlands. <i>Journal of Environmental Quality</i> , 1999 , 28, 263-269	3.4	112
4	Nitrogen cycling and tile drainage nitrate loss in a corn/soybean watershed. <i>Agriculture, Ecosystems and Environment</i> , 1998 , 68, 85-97	5.7	83
3	Kinetics and Modeling of Dissolved Phosphorus Export from a Tile-Drained Agricultural Watershed. Journal of Environmental Quality, 1998 , 27, 917-922	3.4	35
2	Nitrogen Balance in and Export from an Agricultural Watershed. <i>Journal of Environmental Quality</i> , 1997 , 26, 1038-1048	3.4	272
1	Maize Productivity as Influenced by Form and Availability of Nitrogen. <i>Crop Science</i> , 1993 , 33, 491-497	2.4	20