G Christopher Cutler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10921860/publications.pdf

Version: 2024-02-01

49 papers

1,911 citations

279798 23 h-index 254184 43 g-index

49 all docs 49 docs citations

49 times ranked 1650 citing authors

#	Article	IF	CITATIONS
1	Imidacloprid seed treatment in soybean-associated arthropod food webs: Reason for concern, or justifiable neglect?. Journal of Pest Science, 2023, 96, 129-139.	3.7	4
2	Pesticide-induced hormesis in arthropods: Towards biological systems. Current Opinion in Toxicology, 2022, 29, 43-50.	5.0	36
3	Hormesis and insects: Effects and interactions in agroecosystems. Science of the Total Environment, 2022, 825, 153899.	8.0	74
4	Hormesis dose–response contaminant-induced hormesis in animals. Current Opinion in Toxicology, 2022, 30, 100336.	5.0	19
5	Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. Science of the Total Environment, 2022, 827, 154085.	8.0	28
6	The impact of planting buckwheat strips along lowbush blueberry fields on beneficial insects. Canadian Journal of Plant Science, 2021, 101, 166-176.	0.9	0
7	Short-Term Dispersal and Long-Term Spatial and Temporal Patterns of Carabidae (Coleoptera) in Lowbush Blueberry Fields. Environmental Entomology, 2020, 49, 572-579.	1.4	3
8	Exposure to low concentrations of pesticide stimulates ecological functioning in the dung beetle <i>Onthophagus nuchicornis</i> . Peerl, 2020, 8, e10359.	2.0	5
9	Impact of Imidacloprid Soil Drenching on Survival, Longevity, and Reproduction of the Zoophytophagous Predator Podisus maculiventris (Hemiptera: Pentatomidae: Asopinae). Journal of Economic Entomology, 2019, 113, 108-114.	1.8	5
10	Poecilus lucublandus (Coleoptera: Carabidae) and Pterostichus mutus Do Not Feed on Hair Fescue, Red Sorrel, and Poverty Oatgrass Seeds. Journal of Insect Science, 2019, 19, .	1.5	1
11	Imidacloprid Soil Drenches Affect Weight and Functional Response of Spined Soldier Bug (Hemiptera:) Tj ETQq1	1 9.78431	14 ggBT /Ov <mark>erl</mark>
12	Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera:) Tj ETC	Qq <u>0</u> ,0 0 rg	gBT_LOverlock
13	Effects of Spinosad, Imidacloprid, and Lambda-cyhalothrin on Survival, Parasitism, and Reproduction of the Aphid Parasitoid Aphidius colemani. Journal of Economic Entomology, 2018, 111, 1096-1103.	1.8	28
14	Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?. Pest Management Science, 2018, 74, 314-322.	3.4	31
15	An assessment of artificial nests for cavity-nesting bees (Hymenoptera: Megachilidae) in lowbush blueberry (Ericaceae). Canadian Entomologist, 2018, 150, 802-812.	0.8	3
16	Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agriculture, Ecosystems and Environment, 2018, 264, 9-14.	5.3	23
17	Acute Exposure to Worst-Case Concentrations of Amitraz Does Not Affect Honey Bee Learning, Short-Term Memory, or Hemolymph Octopamine Levels. Journal of Economic Entomology, 2017, 110, tow250.	1.8	8
18	Examination of dogbane beetle (Chrysochus auratus) feeding and phenology on spreading dogbane, and considerations for biological control. Arthropod-Plant Interactions, 2017, 11, 807-814.	1.1	0

#	Article	IF	CITATIONS
19	Ovicidal, larvicidal, and behavioural effects of some plant essential oils on diamondback moth (Lepidoptera: Plutellidae). Canadian Entomologist, 2017, 149, 639-648.	0.8	21
20	Occurrence and Significance of Insecticide-Induced Hormesis in Insects. ACS Symposium Series, 2017, , 101-119.	0.5	25
21	Organic mulches in highbush blueberries alter beetle (Coleoptera) community composition and improve functional group abundance and diversity. Agricultural and Forest Entomology, 2016, 18, 119-127.	1.3	7
22	Weed seed granivory by carabid beetles and crickets for biological control of weeds in commercial lowbush blueberry fields. Agricultural and Forest Entomology, 2016, 18, 390-397.	1.3	10
23	Sublethal concentrations of imidacloprid increase reproduction, alter expression of detoxification genes, and prime Myzus persicae for subsequent stress. Journal of Pest Science, 2016, 89, 581-589.	3.7	63
24	Initial recommendations for higherâ€tier risk assessment protocols for bumble bees, <i>Bombus</i> spp. (Hymenoptera: Apidae). Integrated Environmental Assessment and Management, 2016, 12, 222-229.	2.9	32
25	Collection of host-marking pheromone from <i>Rhagoletis mendax</i> (Diptera: Tephritidae). Canadian Entomologist, 2016, 148, 552-555.	0.8	4
26	Bee Ecotoxicology and Data Veracity: Appreciating the GLP Process. BioScience, 2016, 66, 1066-1069.	4.9	4
27	Comparison of buckwheat, red clover, and purple tansy as potential surrogate plants for use in semi-field pesticide risk assessments withBombus impatiens. PeerJ, 2016, 4, e2228.	2.0	4
28	Can poisons stimulate bees? Appreciating the potential of hormesis in bee-pesticide research. Pest Management Science, 2015, 71, 1368-1370.	3.4	59
29	Wild bee pollinator communities of lowbush blueberry fields: Spatial and temporal trends. Basic and Applied Ecology, 2015, 16, 73-85.	2.7	10
30	Effect of low doses of precocene on reproduction and gene expression in green peach aphid. Chemosphere, 2015, 128, 245-251.	8.2	27
31	Effects of environmentally-relevant mixtures of four common organophosphorus insecticides on the honey bee (Apis mellifera L.). Journal of Insect Physiology, 2015, 82, 85-91.	2.0	26
32	An artificial nesting substrate for <i>Osmia</i> species that nest under stones, with focus on <i>Osmia inermis</i> (Hymenoptera: Megachilidae). Insect Conservation and Diversity, 2015, 8, 189-192.	3.0	10
33	Where is the value in valuing pollination ecosystem services to agriculture?. Ecological Economics, 2015, 109, 59-70.	5.7	80
34	Molecular analysis reveals lowbush blueberry pest predation rates depend on ground beetle (Coleoptera: Carabidae) species and pest density. BioControl, 2014, 59, 749-760.	2.0	14
35	A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success. PeerJ, 2014, 2, e652.	2.0	109
36	Gene Expression during Imidacloprid-Induced Hormesis in Green Peach Aphid. Dose-Response, 2014, 12, dose-response.1.	1.6	22

#	Article	IF	CITATIONS
37	Insecticideâ€induced hormesis and arthropod pest management. Pest Management Science, 2014, 70, 690-697.	3.4	265
38	Honey bees, neonicotinoids and bee incident reports: the Canadian situation. Pest Management Science, 2014, 70, 779-783.	3.4	34
39	A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. Ecotoxicology, 2014, 23, 1755-1763.	2.4	56
40	Predation of lowbush blueberry insect pests by ground beetles (Coleoptera: Carabidae) in the laboratory. Journal of Pest Science, 2013, 86, 525-532.	3.7	19
41	Insects, Insecticides and Hormesis: Evidence and Considerations for Study. Dose-Response, 2013, 11, dose-response.1.	1.6	188
42	Different toxic and hormetic responses of <i>Bombus impatiens</i> to <i>Beauveria bassiana, Bacillus subtilis</i> and spirotetramat. Pest Management Science, 2013, 69, 949-954.	3.4	25
43	Spreading Dogbane (Apocynum androsaemifolium) Development in Wild Blueberry Fields. Weed Science, 2013, 61, 422-427.	1.5	10
44	Transgenerational Shifts in Reproduction Hormesis in Green Peach Aphid Exposed to Low Concentrations of Imidacloprid. PLoS ONE, 2013, 8, e74532.	2.5	104
45	Berry unexpected: Nocturnal pollination of lowbush blueberry. Canadian Journal of Plant Science, 2012, 92, 707-711.	0.9	28
46	Laboratory and field susceptibility of blueberry spanworm (Lepidoptera: Geometridae) to conventional and reduced-risk insecticides. Crop Protection, 2011, 30, 1643-1648.	2.1	12
47	Mulch type and moisture level affect pupation depth of Rhagoletis mendax Curran (Diptera:) Tj ETQq1 1 0.7843	14 ggBT /0	Dverlock 10 T
48	Green peach aphid, <i>Myzus persicae</i> (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Management Science, 2009, 65, 205-209.	3.4	103
49	Exposure to Clothianidin Seed-Treated Canola Has No Long-Term Impact on Honey Bees. Journal of Economic Entomology, 2007, 100, 765-772.	1.8	140