
G Christopher Cutler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10921860/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insecticideâ€induced hormesis and arthropod pest management. Pest Management Science, 2014, 70, 690-697.	3.4	265
2	Insects, Insecticides and Hormesis: Evidence and Considerations for Study. Dose-Response, 2013, 11, dose-response.1.	1.6	188
3	Exposure to Clothianidin Seed-Treated Canola Has No Long-Term Impact on Honey Bees. Journal of Economic Entomology, 2007, 100, 765-772.	1.8	140
4	A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success. PeerJ, 2014, 2, e652.	2.0	109
5	Transgenerational Shifts in Reproduction Hormesis in Green Peach Aphid Exposed to Low Concentrations of Imidacloprid. PLoS ONE, 2013, 8, e74532.	2.5	104
6	Green peach aphid, <i>Myzus persicae</i> (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Management Science, 2009, 65, 205-209.	3.4	103
7	Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera:) Tj B	ETQq1_1 0.7	784314 rgBT 97
8	Where is the value in valuing pollination ecosystem services to agriculture?. Ecological Economics, 2015, 109, 59-70.	5.7	80
9	Hormesis and insects: Effects and interactions in agroecosystems. Science of the Total Environment, 2022, 825, 153899.	8.0	74
10	Sublethal concentrations of imidacloprid increase reproduction, alter expression of detoxification genes, and prime Myzus persicae for subsequent stress. Journal of Pest Science, 2016, 89, 581-589.	3.7	63
11	Can poisons stimulate bees? Appreciating the potential of hormesis in bee-pesticide research. Pest Management Science, 2015, 71, 1368-1370.	3.4	59
12	A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. Ecotoxicology, 2014, 23, 1755-1763.	2.4	56
13	Pesticide-induced hormesis in arthropods: Towards biological systems. Current Opinion in Toxicology, 2022, 29, 43-50.	5.0	36
14	Honey bees, neonicotinoids and bee incident reports: the Canadian situation. Pest Management Science, 2014, 70, 779-783.	3.4	34
15	Initial recommendations for higherâ€ŧier risk assessment protocols for bumble bees, <i>Bombus</i> spp. (Hymenoptera: Apidae). Integrated Environmental Assessment and Management, 2016, 12, 222-229.	2.9	32
16	Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?. Pest Management Science, 2018, 74, 314-322.	3.4	31
17	Berry unexpected: Nocturnal pollination of lowbush blueberry. Canadian Journal of Plant Science, 2012, 92, 707-711.	0.9	28
18	Effects of Spinosad, Imidacloprid, and Lambda-cyhalothrin on Survival, Parasitism, and Reproduction of the Aphid Parasitoid Aphidius colemani. Journal of Economic Entomology, 2018, 111, 1096-1103.	1.8	28

#	Article	IF	CITATIONS
19	Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects. Science of the Total Environment, 2022, 827, 154085.	8.0	28

20 Mulch type and moisture level affect pupation depth of Rhagoletis mendax Curran (Diptera:) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 702

21	Effect of low doses of precocene on reproduction and gene expression in green peach aphid. Chemosphere, 2015, 128, 245-251.	8.2	27
22	Effects of environmentally-relevant mixtures of four common organophosphorus insecticides on the honey bee (Apis mellifera L.). Journal of Insect Physiology, 2015, 82, 85-91.	2.0	26
23	Different toxic and hormetic responses of <i>Bombus impatiens</i> to <i>Beauveria bassiana, Bacillus subtilis</i> and spirotetramat. Pest Management Science, 2013, 69, 949-954.	3.4	25
24	Occurrence and Significance of Insecticide-Induced Hormesis in Insects. ACS Symposium Series, 2017, , 101-119.	0.5	25
25	Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agriculture, Ecosystems and Environment, 2018, 264, 9-14.	5.3	23
26	Gene Expression during Imidacloprid-Induced Hormesis in Green Peach Aphid. Dose-Response, 2014, 12, dose-response.1.	1.6	22
27	Ovicidal, larvicidal, and behavioural effects of some plant essential oils on diamondback moth (Lepidoptera: Plutellidae). Canadian Entomologist, 2017, 149, 639-648.	0.8	21
28	Predation of lowbush blueberry insect pests by ground beetles (Coleoptera: Carabidae) in the laboratory. Journal of Pest Science, 2013, 86, 525-532.	3.7	19
29	Hormesis dose–response contaminant-induced hormesis in animals. Current Opinion in Toxicology, 2022, 30, 100336.	5.0	19
30	Molecular analysis reveals lowbush blueberry pest predation rates depend on ground beetle (Coleoptera: Carabidae) species and pest density. BioControl, 2014, 59, 749-760.	2.0	14
31	Laboratory and field susceptibility of blueberry spanworm (Lepidoptera: Geometridae) to conventional and reduced-risk insecticides. Crop Protection, 2011, 30, 1643-1648.	2.1	12
32	Spreading Dogbane (Apocynum androsaemifolium) Development in Wild Blueberry Fields. Weed Science, 2013, 61, 422-427.	1.5	10
33	Wild bee pollinator communities of lowbush blueberry fields: Spatial and temporal trends. Basic and Applied Ecology, 2015, 16, 73-85.	2.7	10
34	An artificial nesting substrate for <i>Osmia</i> species that nest under stones, with focus on <i>Osmia inermis</i> (Hymenoptera: Megachilidae). Insect Conservation and Diversity, 2015, 8, 189-192.	3.0	10
35	Weed seed granivory by carabid beetles and crickets for biological control of weeds in commercial lowbush blueberry fields. Agricultural and Forest Entomology, 2016, 18, 390-397.	1.3	10
36	Acute Exposure to Worst-Case Concentrations of Amitraz Does Not Affect Honey Bee Learning, Short-Term Memory, or Hemolymph Octopamine Levels. Journal of Economic Entomology, 2017, 110, tow250.	1.8	8

#	Article	IF	CITATIONS
37	Imidacloprid Soil Drenches Affect Weight and Functional Response of Spined Soldier Bug (Hemiptera:) Tj ETQq1 I	1 0.78431 1.8	4 ggBT /Ove
38	Organic mulches in highbush blueberries alter beetle (Coleoptera) community composition and improve functional group abundance and diversity. Agricultural and Forest Entomology, 2016, 18, 119-127.	1.3	7
39	Impact of Imidacloprid Soil Drenching on Survival, Longevity, and Reproduction of the Zoophytophagous Predator Podisus maculiventris (Hemiptera: Pentatomidae: Asopinae). Journal of Economic Entomology, 2019, 113, 108-114.	1.8	5
40	Exposure to low concentrations of pesticide stimulates ecological functioning in the dung beetle <i>Onthophagus nuchicornis</i> . PeerJ, 2020, 8, e10359.	2.0	5
41	Collection of host-marking pheromone from <i>Rhagoletis mendax</i> (Diptera: Tephritidae). Canadian Entomologist, 2016, 148, 552-555.	0.8	4
42	Bee Ecotoxicology and Data Veracity: Appreciating the GLP Process. BioScience, 2016, 66, 1066-1069.	4.9	4
43	Comparison of buckwheat, red clover, and purple tansy as potential surrogate plants for use in semi-field pesticide risk assessments withBombus impatiens. PeerJ, 2016, 4, e2228.	2.0	4
44	Imidacloprid seed treatment in soybean-associated arthropod food webs: Reason for concern, or justifiable neglect?. Journal of Pest Science, 2023, 96, 129-139.	3.7	4
45	An assessment of artificial nests for cavity-nesting bees (Hymenoptera: Megachilidae) in lowbush blueberry (Ericaceae). Canadian Entomologist, 2018, 150, 802-812.	0.8	3
46	Short-Term Dispersal and Long-Term Spatial and Temporal Patterns of Carabidae (Coleoptera) in Lowbush Blueberry Fields. Environmental Entomology, 2020, 49, 572-579.	1.4	3
47	Poecilus lucublandus (Coleoptera: Carabidae) and Pterostichus mutus Do Not Feed on Hair Fescue, Red Sorrel, and Poverty Oatgrass Seeds. Journal of Insect Science, 2019, 19, .	1.5	1
48	Examination of dogbane beetle (Chrysochus auratus) feeding and phenology on spreading dogbane, and considerations for biological control. Arthropod-Plant Interactions, 2017, 11, 807-814.	1.1	0
49	The impact of planting buckwheat strips along lowbush blueberry fields on beneficial insects. Canadian Journal of Plant Science, 2021, 101, 166-176.	0.9	0