
Kathryn L Penney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10921798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Healthy Lifestyle in Men at Increased Genetic Risk for Prostate Cancer. European Urology, 2023, 83, 343-351.	0.9	23
2	Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: a collaborative analysis of 20 prospective studies and Mendelian randomization analysis. International Journal of Epidemiology, 2023, 52, 71-86.	0.9	16
3	Evaluation of a Multiethnic Polygenic Risk Score Model for Prostate Cancer. Journal of the National Cancer Institute, 2022, 114, 771-774.	3.0	39
4	Metabolic syndrome and its pharmacologic treatment are associated with the time to castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 320-326.	2.0	4
5	Finding a Place for Family History To Inform High-grade Prostate Cancer Risk. European Urology, 2022, , .	0.9	0
6	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	2.0	14
7	Circulating Insulin-Like Growth Factor 1–Related Biomarkers and Risk of Lethal Prostate Cancer. JNCI Cancer Spectrum, 2022, 6, pkab091.	1.4	6
8	DNA Repair Pathways and Their Association With Lethal Prostate Cancer in African American and European American Men. JNCI Cancer Spectrum, 2022, 6, pkab097.	1.4	5
9	Circulating free testosterone and risk of aggressive prostate cancer: Prospective and Mendelian randomisation analyses in international consortia. International Journal of Cancer, 2022, 151, 1033-1046.	2.3	18
10	Metabolomics of Prostate Cancer Gleason Score in Tumor Tissue and Serum. Molecular Cancer Research, 2021, 19, 475-484.	1.5	22
11	Genetic Predictors of Severe Skin Toxicity in Patients with Stage III Colon Cancer Treated with Cetuximab: NCCTG N0147 (Alliance). Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 404-411.	1.1	1
12	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
13	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	2.0	16
14	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	5.8	40
15	Association of Prediagnostic Blood Metabolomics with Prostate Cancer Defined by ERG or PTEN Molecular Subtypes. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1000-1008.	1.1	2
16	A polymorphism in the promoter of FRAS1 is a candidate SNP associated with metastatic prostate cancer. Prostate, 2021, 81, 683-693.	1.2	5
17	Abstract 822: Can the genetic risk of prostate cancer be attenuated by a healthy lifestyle. , 2021, , .		2
18	Abstract 893: Batch effects in tumor biomarker studies using tissue microarrays: Extent, impact, and remediation. , 2021, , .		0

2

#	Article	IF	CITATIONS
19	Genetic Variant Associated With Survival of Patients With Stage II-III Colon Cancer. Clinical Gastroenterology and Hepatology, 2020, 18, 2717-2723.e3.	2.4	7
20	Multiplex Immunofluorescence in Formalin-Fixed Paraffin-Embedded Tumor Tissue to Identify Single-Cell–Level PI3K Pathway Activation. Clinical Cancer Research, 2020, 26, 5903-5913.	3.2	8
21	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	1.7	16
22	Inferior Cancer Survival for Men with Localized High-grade Prostate Cancer but Low Prostate-specific Antigen. European Urology, 2020, 78, 637-639.	0.9	5
23	Genome-Wide Association Study for Urinary and Fecal Incontinence in Women. Journal of Urology, 2020, 203, 978-983.	0.2	8
24	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
25	Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in Over 140,000 European Descendants. Cancer Research, 2019, 79, 3192-3204.	0.4	43
26	Genetic and Epigenetic Determinants of Aggressiveness in Cribriform Carcinoma of the Prostate. Molecular Cancer Research, 2019, 17, 446-456.	1.5	44
27	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	1.1	21
28	Re: Melissa Assel, Anders Dahlin, David Ulmert, et al. Association Between Lead Time and Prostate Cancer Grade: Evidence of Grade Progression from Long-term Follow-up of Large Population-based Cohorts Not Subject to Prostate-specific Antigen Screening. Eur Urol 2018;73:961–7. European Urology, 2019, 75, e54-e55.	0.9	0
29	Associations of cell cycle genetic variants with aggressive prostate cancer in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial Journal of Clinical Oncology, 2019, 37, 175-175.	0.8	Ο
30	Height, Obesity, and the Risk of <i>TMPRSS2:ERG</i> -Defined Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 193-200.	1.1	18
31	MYC Overexpression at the Protein and mRNA Level and Cancer Outcomes among Men Treated with Radical Prostatectomy for Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 201-207.	1.1	21
32	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	5.8	43
33	Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nature Communications, 2018, 9, 4079.	5.8	121
34	Loss of <i>LDAH</i> associated with prostate cancer and hearing loss. Human Molecular Genetics, 2018, 27, 4194-4203.	1.4	14
35	A genome-wide association study of energy intake and expenditure. PLoS ONE, 2018, 13, e0201555.	1.1	14
36	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	9.4	652

#	Article	IF	CITATIONS
37	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	5.8	88
38	Metabolic Profiling in Formalin-Fixed and Paraffin-Embedded Prostate Cancer Tissues. Molecular Cancer Research, 2017, 15, 439-447.	1.5	53
39	Expression and Genetic Variation in Neuroendocrine Signaling Pathways in Lethal and Nonlethal Prostate Cancer among Men Diagnosed with Localized Disease. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1781-1787.	1.1	6
40	Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nature Communications, 2017, 8, 420.	5.8	91
41	Prognostic Utility of a New mRNA Expression Signature of Gleason Score. Clinical Cancer Research, 2017, 23, 81-87.	3.2	58
42	Molecular and Genetic Epidemiology of Cancer. , 2017, , 83-89.		1
43	Association of genetic variations of selenoprotein genes, plasma selenium levels, and prostate cancer aggressiveness at diagnosis. Prostate, 2016, 76, 691-699.	1.2	21
44	Association of Prostate Cancer Risk Variants with <i>TMPRSS2:ERG</i> Status: Evidence for Distinct Molecular Subtypes. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 745-749.	1.1	23
45	Selenium- or Vitamin E–Related Gene Variants, Interaction with Supplementation, and Risk of High-Grade Prostate Cancer in SELECT. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1050-1058.	1.1	55
46	Cholesterol Metabolism and Prostate Cancer Lethality. Cancer Research, 2016, 76, 4785-4790.	0.4	61
47	Deletion of Interstitial Genes between <i>TMPRSS2</i> and <i>ERG</i> Promotes Prostate Cancer Progression. Cancer Research, 2016, 76, 1869-1881.	0.4	29
48	Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA - Journal of the American Medical Association, 2016, 315, 68.	3.8	648
49	A Large Multiethnic Genome-Wide Association Study of Prostate Cancer Identifies Novel Risk Variants and Substantial Ethnic Differences. Cancer Discovery, 2015, 5, 878-891.	7.7	111
50	GermLine Variation in Superoxide Dismutase-2 (SOD2) and Survival Outcomes After Radiation Therapy for Prostate Cancer: Results of a Test and Validation Set Analysis. Clinical Genitourinary Cancer, 2015, 13, 370-377.e1.	0.9	8
51	Molecular differences in transition zone and peripheral zone prostate tumors. Carcinogenesis, 2015, 36, 632-638.	1.3	34
52	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	1.1	27
53	Calcium intake, polymorphisms of the calcium-sensing receptor, and recurrent/aggressive prostate cancer. Cancer Causes and Control, 2015, 26, 1751-1759.	0.8	7
54	Association of Prostate Cancer Risk Variants with Gene Expression in Normal and Tumor Tissue. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 255-260.	1.1	97

#	Article	IF	CITATIONS
55	Prostate Cancer (PCa) Risk Variants and Risk of Fatal PCa in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. European Urology, 2014, 65, 1069-1075.	0.9	75
56	SPINK1 Protein Expression and Prostate Cancer Progression. Clinical Cancer Research, 2014, 20, 4904-4911.	3.2	71
57	Plasma Antioxidants, Genetic Variation in SOD2, CAT, GPX1, GPX4, and Prostate Cancer Survival. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1037-1046.	1.1	27
58	The Heritability of Prostate Cancer in the Nordic Twin Study of Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2303-2310.	1.1	169
59	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408
60	Reply to M.M.J. Zanders et al. Journal of Clinical Oncology, 2014, 32, 702-703.	0.8	0
61	Genetic variation across C-reactive protein and risk of prostate cancer. Prostate, 2014, 74, 1034-1042.	1.2	14
62	Protein Expression of PTEN, Insulin-Like Growth Factor I Receptor (IGF-IR), and Lethal Prostate Cancer: A Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1984-1993.	1.1	41
63	Modification of the Association Between Obesity and Lethal Prostate Cancer by TMPRSS2:ERG. Journal of the National Cancer Institute, 2013, 105, 1881-1890.	3.0	80
64	Gleason Grade Progression Is Uncommon. Cancer Research, 2013, 73, 5163-5168.	0.4	76
65	Common Genetic Variation of the Calcium-Sensing Receptor and Lethal Prostate Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 118-126.	1.1	23
66	Selenoprotein P genetic variants and mrna expression, circulating selenium, and prostate cancer risk and survival. Prostate, 2013, 73, 700-705.	1.2	25
67	Vitamin D–Related Genetic Variation, Plasma Vitamin D, and Risk of Lethal Prostate Cancer: A Prospective Nested Case–Control Study. Journal of the National Cancer Institute, 2012, 104, 690-699.	3.0	196
68	The <i>TMPRSS2:ERG</i> Rearrangement, ERG Expression, and Prostate Cancer Outcomes: A Cohort Study and Meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1497-1509.	1.1	268
69	Seasonal variation in expression of markers in the vitamin D pathway in prostate tissue. Cancer Causes and Control, 2012, 23, 1359-1366.	0.8	6
70	Vitamin D Receptor Protein Expression in Tumor Tissue and Prostate Cancer Progression. Journal of Clinical Oncology, 2011, 29, 2378-2385.	0.8	130
71	Association of KLK3 (PSA) genetic variants with prostate cancer risk and PSA levels. Carcinogenesis, 2011, 32, 853-859.	1.3	36
72	mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 2391-2396.	0.8	140

#	Article	IF	CITATIONS
73	TUMOR BIOLOGY. , 2011, , 133-157.		0
74	Fatty Acid Synthase Polymorphisms, Tumor Expression, Body Mass Index, Prostate Cancer Risk, and Survival. Journal of Clinical Oncology, 2010, 28, 3958-3964.	0.8	113
75	Genome-wide Association Study of Prostate Cancer Mortality. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2869-2876.	1.1	46
76	A Large Prospective Study of <i>SEP15</i> Genetic Variation, Interaction with Plasma Selenium Levels, and Prostate Cancer Risk and Survival. Cancer Prevention Research, 2010, 3, 604-610.	0.7	79
77	Analysis of the 10q11 Cancer Risk Locus Implicates MSMB and NCOA4 in Human Prostate Tumorigenesis. PLoS Genetics, 2010, 6, e1001204.	1.5	82
78	Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis, 2010, 31, 1597-1603.	1.3	54
79	Evaluation of 8q24 and 17q Risk Loci and Prostate Cancer Mortality. Clinical Cancer Research, 2009, 15, 3223-3230.	3.2	46
80	Evaluation of the 8q24 Prostate Cancer Risk Locus and <i>MYC</i> Expression. Cancer Research, 2009, 69, 5568-5574.	0.4	110
81	Haplotype-Based Association Studies of IGFBP1 and IGFBP3 with Prostate and Breast Cancer Risk: The Multiethnic Cohort. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1993-1997.	1.1	47
82	IGF-I Genetic Variation and Breast Cancer: the Multiethnic Cohort. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 172-174.	1.1	21
83	Common Genetic Variation in IGF1 and Prostate Cancer Risk in the Multiethnic Cohort. Journal of the National Cancer Institute, 2006, 98, 123-134.	3.0	107
84	Systematic Evaluation of Genetic Variation at the Androgen Receptor Locus and Risk of Prostate Cancer in a Multiethnic Cohort Study. American Journal of Human Genetics, 2005, 76, 82-90.	2.6	72
85	A Haplotype-Based Case-Control Study of BRCA1 and Sporadic Breast Cancer Risk. Cancer Research, 2005, 65, 7516-7522.	0.4	53
86	Common variation in BRCA2 and breast cancer risk: a haplotype-based analysis in the Multiethnic Cohort. Human Molecular Genetics, 2004, 13, 2431-2441.	1.4	51
87	Assessing the impact of population stratification on genetic association studies. Nature Genetics, 2004, 36, 388-393.	9.4	734