
Qingyu Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092117/publications.pdf Version: 2024-02-01

OINCYLL DENC

#	Article	IF	CITATIONS
1	Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene) Tj ETQq1 1 0.784314 rgB	T /Overlock	10 Tf 50 74
2	Roles of twisting-compression operations on mechanical enhancement of carbon nanotube fibers. Carbon, 2021, 172, 41-49.	5.4	12
3	An ultra-broad-range pressure sensor based on a gradient stiffness design. Materials Horizons, 2021, 8, 2260-2272.	6.4	24
4	Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy. Nanoscale Advances, 2021, 3, 5683-5693.	2.2	18
5	Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance. Carbon, 2021, 185, 186-197.	5.4	36
6	Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon, 2020, 157, 427-436.	5.4	64
7	Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites. Carbon, 2020, 158, 704-710.	5.4	57
8	A Photoactuator Based on Stiffness-Variable Carbon Nanotube Nanocomposite Yarn. ACS Applied Materials & Interfaces, 2020, 12, 40711-40718.	4.0	18
9	Graphene–Carbon Composite Films as Thermal Management Materials. ACS Applied Nano Materials, 2020, 3, 9076-9087.	2.4	21
10	Mechanical Properties Improvement in Highly and Aligned Dispersed Graphene Oxide/Bismaleimide Nanocomposites based on Graphene Oxide Sponge. Advanced Engineering Materials, 2020, 22, 2000231.	1.6	3
11	Partially unzipping carbon nanotubes: A route to synchronously improve fracture strength and toughness of nanocomposites inspired by pinning effect of screw. Materials Today Communications, 2020, 25, 101355.	0.9	3
12	Highly Conductive Multifunctional rGO/CNT Hybrid Sponge for Electromagnetic Wave Shielding and Strain Sensor. Advanced Materials Technologies, 2019, 4, 1900443.	3.0	32
13	Active control of graphene-based membrane-type acoustic metamaterials using a low voltage. Nanoscale, 2019, 11, 16384-16392.	2.8	18
14	Electromagnetic and acoustic double-shielding graphene-based metastructures. Nanoscale, 2019, 11, 1692-1699.	2.8	32
15	Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn. Nanoscale, 2019, 11, 8124-8132.	2.8	40
16	Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure. Nanoscale Advances, 2019, 1, 4895-4903.	2.2	27
17	Superflexible Interconnected Graphene Network Nanocomposites for High-Performance Electromagnetic Interference Shielding. ACS Omega, 2018, 3, 3599-3607.	1.6	40
18	Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper. Journal of Materials Chemistry C, 2018, 6, 12321-12328.	2.7	37

QINGYU PENG

#	Article	IF	CITATIONS
19	Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 21371-21381.	4.0	148
20	Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications. Nanoscale, 2017, 9, 14476-14485.	2.8	70
21	Superlight, Mechanically Flexible, Thermally Superinsulating, and Antifrosting Anisotropic Nanocomposite Foam Based on Hierarchical Graphene Oxide Assembly. ACS Applied Materials & Interfaces, 2017, 9, 44010-44017.	4.0	60
22	Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale, 2016, 8, 18042-18049.	2.8	74
23	Multifunctional, Highly Flexible, Free‣tanding 3D Polypyrrole Foam. Small, 2016, 12, 4070-4076.	5.2	71
24	Multifunctional Stiff Carbon Foam Derived from Bread. ACS Applied Materials & Interfaces, 2016, 8, 16852-16861.	4.0	151
25	Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. ACS Nano, 2015, 9, 8933-8941.	7.3	666
26	Largeâ€Deformation, Multifunctional Artificial Muscles Based on Singleâ€Walled Carbon Nanotube Yarns. Advanced Engineering Materials, 2015, 17, 14-20.	1.6	36
27	Graphene Nanoribbon Aerogels Unzipped from Carbon Nanotube Sponges. Advanced Materials, 2014, 26, 3241-3247.	11.1	151
28	Multifunctional graphene sheet–nanoribbon hybrid aerogels. Journal of Materials Chemistry A, 2014, 2, 14994-15000.	5.2	54
29	Theoretical prediction and experimental verification of pulling carbon nanotubes from carbon fiber prepared by chemical grafting method. Composites Part A: Applied Science and Manufacturing, 2013, 50, 1-10.	3.8	31
30	Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization. Composites Science and Technology, 2013, 74, 37-42.	3.8	169
31	Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1,3-propodiamine. Composites Science and Technology, 2013, 85, 36-42.	3.8	67
32	Overtwisted, Resolvable Carbon Nanotube Yarn Entanglement as Strain Sensors and Rotational Actuators. ACS Nano, 2013, 7, 8128-8135.	7.3	94
33	Microstructure, mechanical and oxidation properties of in-situ synthesized (Y ₂ O ₃ + TiC)/Ti-4.5Si composites. International Journal of Materials Research, 2013, 104, 65-70.	0.1	0
34	Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites. Journal of Materials Chemistry, 2012, 22, 5928.	6.7	168
35	Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers. Journal of Materials Chemistry, 2012, 22, 18748.	6.7	120
36	Dependence of Amino-functionalization on Interfacial Adhesion Strength in Epoxy/Al Laminated Composites. Polymers and Polymer Composites, 2012, 20, 445-452.	1.0	1

QINGYU PENG

#	Article	IF	CITATIONS
37	Superâ€Stretchable Springâ€Like Carbon Nanotube Ropes. Advanced Materials, 2012, 24, 2896-2900.	11.1	193
38	Carbon Nanotubes: Super‧tretchable Spring‣ike Carbon Nanotube Ropes (Adv. Mater. 21/2012). Advanced Materials, 2012, 24, 2935-2935.	11.1	3
39	Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber. Carbon, 2012, 50, 3782-3788.	5.4	44
40	A pullout model for inclined carbon nanotube. Mechanics of Materials, 2012, 52, 28-39.	1.7	13
41	Enhancement of compositeâ€metal interfacial adhesion strength by dendrimer. Surface and Interface Analysis, 2011, 43, 726-733.	0.8	7
42	Grafting carbon nanotubes onto carbon fiber by use of dendrimers. Materials Letters, 2010, 64, 2505-2508.	1.3	82