Claus Svendsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1092037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention. Science of the Total Environment, 2022, 807, 151022.	3.9	62
2	Assessing the efficacy of antibiotic treatment to produce earthworms with a suppressed microbiome. European Journal of Soil Biology, 2022, 108, 103366.	1.4	2
3	How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact, 2022, 25, 100366.	2.4	23
4	The bioaccumulation testing strategy for nanomaterials: correlations with particle properties and a meta-analysis of <i>in vitro</i> fish alternatives to <i>in vivo</i> fish tests. Environmental Science: Nano, 2022, 9, 684-701.	2.2	7
5	Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms. NanoImpact, 2022, 25, 100375.	2.4	6
6	Assessing the similarity of nanoforms based on the biodegradation of organic surface treatment chemicals. NanoImpact, 2022, 26, 100395.	2.4	4
7	Reproducibility of methods required to identify and characterize nanoforms of substances. NanoImpact, 2022, 27, 100410.	2.4	2
8	Semi-automated analysis of microplastics in complex wastewater samples. Environmental Pollution, 2021, 268, 115841.	3.7	72
9	A Kinetic Approach for Assessing the Uptake of Ag from Pristine and Sulfidized Ag Nanomaterials to Plants. Environmental Toxicology and Chemistry, 2021, 40, 1859-1870.	2.2	3
10	The bioaccumulation testing strategy for manufactured nanomaterials: physico-chemical triggers and read across from earthworms in a meta-analysis. Environmental Science: Nano, 2021, 8, 3167-3185.	2.2	4
11	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	2.2	32
12	Predicting acute contact toxicity of organic binary mixtures in honey bees (A. mellifera) through innovative QSAR models. Science of the Total Environment, 2020, 704, 135302.	3.9	38
13	Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. Environmental Science: Nano, 2020, 7, 3216-3232.	2.2	17
14	The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms. Nanomaterials, 2020, 10, 1337.	1.9	24
15	A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today, 2020, 35, 100941.	6.2	80
16	The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. Environmental Pollution, 2020, 267, 115633.	3.7	17
17	Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. Environmental Science & Technology, 2020, 54, 12326-12334.	4.6	97
18	Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nature Nanotechnology, 2020, 15, 731-742.	15.6	66

#	Article	IF	CITATIONS
19	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small, 2020, 16, e2000598.	5.2	35
20	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 2020, 18, 583-602.	1.9	74
21	A standardised bioassay method using a benchâ€ŧop spray tower to evaluate entomopathogenic fungi for control of the greenhouse whitefly, <i>Trialeurodes vaporariorum</i> . Pest Management Science, 2020, 76, 2513-2524.	1.7	9
22	Using problem formulation for fitâ€forâ€purpose preâ€market environmental risk assessments of regulated stressors. EFSA Journal, 2019, 17, e170708.	0.9	15
23	Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. Environment International, 2019, 133, 105256.	4.8	54
24	Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. Environmental Pollution, 2019, 254, 113078.	3.7	31
25	Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environmental Pollution, 2019, 255, 113174.	3.7	150
26	Toxicogenomic responses of Caenorhabditis elegans to pristine and transformed zinc oxide nanoparticles. Environmental Pollution, 2019, 247, 917-926.	3.7	34
27	Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. Environmental Science: Nano, 2019, 6, 1985-2001.	2.2	43
28	Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA Journal, 2019, 17, e05634.	0.9	201
29	Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability, 2019, 36, 105-115.	3.1	54
30	Phenotypic responses in <i>Caenorhabditis elegans</i> following chronic lowâ€level exposures to inorganic and organic compounds. Environmental Toxicology and Chemistry, 2018, 37, 920-930.	2.2	4
31	Quality evaluation of human and environmental toxicity studies performed with nanomaterials – the GUIDEnano approach. Environmental Science: Nano, 2018, 5, 381-397.	2.2	48
32	Nanomaterials as Soil Pollutants. , 2018, , 161-190.		13
33	Harmonised risk assessment for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals: a food and feed safety perspective. Toxicology Letters, 2018, 295, S37-S38.	0.4	0
34	Aging reduces the toxicity of pristine but not sulphidised silver nanoparticles to soil bacteria. Environmental Science: Nano, 2018, 5, 2618-2630.	2.2	25
35	Acute toxicity of organic pesticides to Daphnia magna is unchanged by co-exposure to polystyrene microplastics. Ecotoxicology and Environmental Safety, 2018, 166, 26-34.	2.9	76
36	Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to <i>Caenorhabditis elegans</i> . Environmental Toxicology and Chemistry, 2018, 37, 2609-2618.	2.2	14

#	Article	IF	CITATIONS
37	Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 2017, 586, 127-141.	3.9	2,188
38	Sewage sludge treated with metal nanomaterials inhibits earthworm reproduction more strongly than sludge treated with metal metals in bulk/salt forms. Environmental Science: Nano, 2017, 4, 78-88.	2.2	33
39	Novel Multi-isotope Tracer Approach To Test ZnO Nanoparticle and Soluble Zn Bioavailability in Joint Soil Exposures. Environmental Science & Technology, 2017, 51, 12756-12763.	4.6	21
40	Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. ACS Nano, 2017, 11, 10894-10902.	7.3	54
41	Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species?. Science of the Total Environment, 2017, 578, 357-365.	3.9	106
42	Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 2017, 114, 218-226.	2.3	651
43	Comparing bee species responses to chemical mixtures: Common response patterns?. PLoS ONE, 2017, 12, e0176289.	1.1	54
44	Comparison and evaluation of pesticide monitoring programs using a processâ€based mixture model. Environmental Toxicology and Chemistry, 2016, 35, 3113-3123.	2.2	8
45	Chronic oral lethal and subâ€lethal toxicities of different binary mixtures of pesticides and contaminants in bees (Apis mellifera, Osmia bicornis and Bombus terrestris). EFSA Supporting Publications, 2016, 13, 1076E.	0.3	13
46	Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling. Scientific Reports, 2016, 6, 37655.	1.6	24
47	Multigenerational exposure to silver ions and silver nanoparticles reveals heightened sensitivity and epigenetic memory in <i>Caenorhabditis elegans</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152911.	1.2	54
48	Joint Toxicity of Cadmium and Ionizing Radiation on Zooplankton Carbon Incorporation, Growth and Mobility. Environmental Science & Technology, 2016, 50, 1527-1535.	4.6	15
49	Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO3 via soil and food. Ecotoxicology, 2016, 25, 267-278.	1.1	38
50	Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environmental Science: Nano, 2016, 3, 396-408.	2.2	45
51	Earthworm Uptake Routes and Rates of Ionic Zn and ZnO Nanoparticles at Realistic Concentrations, Traced Using Stable Isotope Labeling. Environmental Science & Technology, 2016, 50, 412-419.	4.6	57
52	Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions. Environmental Science and Pollution Research, 2016, 23, 4218-4234.	2.7	14
53	Great deeds or great risks? Scientists' social representations of nanotechnology. Journal of Risk Research, 2016, 19, 760-779.	1.4	19
54	Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environmental Science and Pollution Research, 2016, 23, 4120-4128.	2.7	79

#	Article	IF	CITATIONS
55	Variable Temperature Stress in the Nematode Caenorhabditis elegans (Maupas) and Its Implications for Sensitivity to an Additional Chemical Stressor. PLoS ONE, 2016, 11, e0140277.	1.1	22
56	Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial. Ecotoxicology and Environmental Safety, 2015, 120, 117-123.	2.9	34
57	Combined Effects from γ Radiation and Fluoranthene Exposure on Carbon Transfer from Phytoplankton to Zooplankton. Environmental Science & Technology, 2015, 49, 10624-10631.	4.6	10
58	Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology, 2015, 24, 239-261.	1.1	49
59	Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. Environmental Pollution, 2015, 205, 385-393.	3.7	60
60	Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm <i>Lumbricus rubellus</i> . Environmental Toxicology and Chemistry, 2015, 34, 2263-2270.	2.2	52
61	Nested interactions in the combined toxicity of uranium and cadmium to the nematode Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2015, 118, 139-148.	2.9	17
62	Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO3) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils. Environmental Pollution, 2015, 203, 191-198.	3.7	93
63	CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida. Ecotoxicology and Environmental Safety, 2015, 113, 201-206.	2.9	18
64	Metabolomic analysis of soil communities can be used for pollution assessment. Environmental Toxicology and Chemistry, 2014, 33, 61-64.	2.2	89
65	The importance of experimental time when assessing the effect of temperature on toxicity in poikilotherms. Environmental Toxicology and Chemistry, 2014, 33, 1363-1371.	2.2	7
66	Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm <i>Eisenia fetida</i> . Nanotoxicology, 2014, 8, 559-572.	1.6	108
67	Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects. Environmental Chemistry, 2014, 11, 268.	0.7	60
68	Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. Environmental Science: Nano, 2014, 1, 533-548.	2.2	110
69	Identifying biochemical phenotypic differences between cryptic species. Biology Letters, 2014, 10, 20140615.	1.0	13
70	Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. Ecotoxicology and Environmental Safety, 2014, 108, 9-15.	2.9	58
71	Modelling the effects of copper on soil organisms and processes using the free ion approach: Towards a multi-species toxicity model. Environmental Pollution, 2013, 178, 244-253.	3.7	34
72	Metabolomics and its use in ecology. Austral Ecology, 2013, 38, 713-720.	0.7	79

5

#	Article	IF	CITATIONS
73	Comparisons of metabolic and physiological changes in rats following short term oral dosing with pesticides commonly found in food. Food and Chemical Toxicology, 2013, 59, 438-445.	1.8	20
74	ZnO nanoparticle interactions with phospholipid monolayers. Journal of Colloid and Interface Science, 2013, 404, 161-168.	5.0	13
75	A new medium for <i>Caenorhabditis elegans</i> toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions. Environmental Toxicology and Chemistry, 2013, 32, 1711-1717.	2.2	33
76	Low temperatures enhance the toxicity of copper and cadmium to <i>Enchytraeus crypticus</i> through different mechanisms. Environmental Toxicology and Chemistry, 2013, 32, 2274-2283.	2.2	25
77	Earthworms Produce phytochelatins in Response to Arsenic. PLoS ONE, 2013, 8, e81271.	1.1	28
78	Potential New Method of Mixture Effects Testing Using Metabolomics and <i>Caenorhabditis elegans</i> . Journal of Proteome Research, 2012, 11, 1446-1453.	1.8	48
79	Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. BMC Medicine, 2012, 10, 61.	2.3	121
80	How does growth temperature affect cadmium toxicity measured on different life history traits in the soil nematode <i>Caenorhabditis elegans</i> ?. Environmental Toxicology and Chemistry, 2012, 31, 787-793.	2.2	19
81	Metalâ€based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry, 2012, 31, 1679-1692.	2.2	355
82	A metabolomics based test of independent action and concentration addition using the earthworm Lumbricus rubellus. Ecotoxicology, 2012, 21, 1436-1447.	1.1	44
83	Towards a renewed research agenda in ecotoxicology. Environmental Pollution, 2012, 160, 201-206.	3.7	78
84	Can the joint effect of ternary mixtures be predicted from binary mixture toxicity results?. Science of the Total Environment, 2012, 427-428, 229-237.	3.9	45
85	Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms. Environment International, 2011, 37, 663-670.	4.8	50
86	Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environment International, 2011, 37, 1111-1117.	4.8	97
87	Toxicokinetic studies reveal variability in earthworm pollutant handling. Pedobiologia, 2011, 54, S217-S222.	0.5	31
88	An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO2 nanoparticles in UK field scenarios. Science of the Total Environment, 2011, 409, 2503-2510.	3.9	150
89	Outdoor and indoor cadmium distributions near an abandoned smelting works and their relations to human exposure. Environmental Pollution, 2011, 159, 3425-3432.	3.7	13
90	Interactions between effects of environmental chemicals and natural stressors: A review. Science of the Total Environment, 2010, 408, 3746-3762.	3.9	621

#	Article	IF	CITATIONS
91	Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations. Science of the Total Environment, 2010, 408, 3794-3802.	3.9	30
92	Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Science of the Total Environment, 2010, 408, 3725-3734.	3.9	198
93	Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans. BMC Systems Biology, 2010, 4, 32.	3.0	46
94	Critical Limits for Hg(II) in soils, derived from chronic toxicity data. Environmental Pollution, 2010, 158, 2465-2471.	3.7	73
95	Similarity, independence, or interaction for binary mixture effects of nerve toxicants for the nematode <i>Caenorhabditis elegans</i> . Environmental Toxicology and Chemistry, 2010, 29, 1182-1191.	2.2	39
96	Toxicity of three binary mixtures to <i>Daphnia magna:</i> Comparing chemical modes of action and deviations from conceptual models. Environmental Toxicology and Chemistry, 2010, 29, 1716-1726.	2.2	101
97	Lessons from mixture toxicity and multiple stressor effects. Complex responses in a changing world. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 154, S13.	0.8	0
98	Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus. Metabolomics, 2009, 5, 72-83.	1.4	48
99	Measurement and modeling of the toxicity of binary mixtures in the nematode <i>Caenorhabditis elegans</i> —a test of independent action. Environmental Toxicology and Chemistry, 2009, 28, 97-104.	2.2	52
100	COMBINED CHEMICAL (FLUORANTHENE) AND DROUGHT EFFECTS ON LUMBRICUS RUBELLUS DEMONSTRATE THE APPLICABILITY OF THE INDEPENDENT ACTION MODEL FOR MULTIPLE STRESSOR ASSESSMENT. Environmental Toxicology and Chemistry, 2009, 28, 629.	2.2	29
101	Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. Ecotoxicology and Environmental Safety, 2009, 72, 71-79.	2.9	98
102	Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricus rubellus. Environmental Pollution, 2009, 157, 2459-2469.	3.7	65
103	'Systems toxicology' approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 2008, 6, 25.	1.7	168
104	Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics, 2008, 9, 266.	1.2	93
105	A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. Chemosphere, 2008, 71, 601-609.	4.2	122
106	Comparative Transcriptomic Responses to Chronic Cadmium, Fluoranthene, and Atrazine Exposure in Lumbricus rubellus. Environmental Science & Technology, 2008, 42, 4208-4214.	4.6	37
107	Effect of temperature and season on reproduction, neutral red retention and metallothionein responses of earthworms exposed to metals in field soils. Environmental Pollution, 2007, 147, 83-93.	3.7	25
108	Steve Hopkin 1956–2006. Environmental Pollution, 2007, 147, iii-iv.	3.7	0

#	Article	IF	CITATIONS
109	Metabolic Profile Biomarkers of Metal Contamination in a Sentinel Terrestrial Species Are Applicable Across Multiple Sites. Environmental Science & Technology, 2007, 41, 4458-4464.	4.6	96
110	DEVELOPING A CRITICAL LOAD APPROACH FOR NATIONAL RISK ASSESSMENTS OF ATMOSPHERIC METAL DEPOSITION. Environmental Toxicology and Chemistry, 2006, 25, 883.	2.2	22
111	EFFECT OF pH ON METAL SPECIATION AND RESULTING METAL UPTAKE AND TOXICITY FOR EARTHWORMS. Environmental Toxicology and Chemistry, 2006, 25, 788.	2.2	74
112	SIGNIFICANCE TESTING OF SYNERGISTIC/ANTAGONISTIC, DOSE LEVEL–DEPENDENT, OR DOSE RATIO–DEPENDENT EFFECTS IN MIXTURE DOSE–RESPONSE ANALYSIS. Environmental Toxicology and Chemistry, 2005, 24, 2701.	2.2	400
113	Fractions Affected and Probabilistic Risk Assessment of Cu, Zn, Cd, and Pb in Soils Using the Free Ion Approach. Environmental Science & Technology, 2005, 39, 8533-8540.	4.6	23
114	Establishing principal soil quality parameters influencing earthworms in urban soils using bioassays. Environmental Pollution, 2005, 133, 199-211.	3.7	20
115	Earthworm responses to Cd and Cu under fluctuating environmental conditions: a comparison with results from laboratory exposures. Environmental Pollution, 2005, 136, 443-452.	3.7	53
116	Hierarchical Responses of Soil Invertebrates (Earthworms) to Toxic Metal Stress. Environmental Science & Technology, 2005, 39, 5327-5334.	4.6	49
117	Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Science of the Total Environment, 2004, 330, 9-20.	3.9	70
118	Pedological Characterisation of Sites Along a Transect from a Primary Cadmium/Lead/Zinc Smelting Works. Ecotoxicology, 2004, 13, 725-737.	1.1	53
119	Environmental Metabonomics: Applying Combination Biomarker Analysis in Earthworms at a Metal Contaminated Site. Ecotoxicology, 2004, 13, 797-806.	1.1	128
120	Metal Effects on Soil Invertebrate Feeding: Measurements Using the Bait Lamina Method. Ecotoxicology, 2004, 13, 807-816.	1.1	58
121	Critical Analysis of Soil Invertebrate Biomarkers: A Field Case Study in Avonmouth, UK. Ecotoxicology, 2004, 13, 817-822.	1.1	31
122	Assessment of a 2,4,6-Trinitrotoluene–Contaminated Site Using Aporrectodea rosea and Eisenia andrei in Mesocosms. Archives of Environmental Contamination and Toxicology, 2004, 48, 56-67.	2.1	16
123	Deriving Soil Critical Limits for Cu, Zn, Cd, and Pb:Â A Method Based on Free Ion Concentrations. Environmental Science & Technology, 2004, 38, 3623-3631.	4.6	188
124	Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 138, 11-21.	1.3	39
125	Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. Chemosphere, 2004, 57, 1675-1681.	4.2	99
126	Responses of earthworms (Lumbricus rubellus) to copper and cadmium as determined by measurement of juvenile traits in a specifically designed test system. Ecotoxicology and Environmental Safety, 2004, 57, 54-64.	2.9	66

#	Article	IF	CITATIONS
127	A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?. Ecotoxicology and Environmental Safety, 2004, 57, 20-29.	2.9	126
128	Comparison of instantaneous rate of population increase and critical-effect estimates in Folsomia candida exposed to four toxicants. Ecotoxicology and Environmental Safety, 2004, 57, 175-183.	2.9	41
129	Closing the loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions. Environmental Toxicology and Chemistry, 2003, 22, 970-976.	2.2	22
130	Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete <i>Lumbricus rubellus</i> . Environmental Toxicology and Chemistry, 2003, 22, 1465-1472.	2.2	40
131	Explaining density-dependent regulation in earthworm populations using life-history analysis. Oikos, 2003, 100, 89-95.	1.2	33
132	Closing the loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions. , 2003, 22, 970.		2
133	QUANTIFYING COPPER AND CADMIUM IMPACTS ON INTRINSIC RATE OF POPULATION INCREASE IN THE TERRESTRIAL OLIGOCHAETE LUMBRICUS RUBELLUS. Environmental Toxicology and Chemistry, 2003, 22, 1465.	2.2	4
134	Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete Lumbricus rubellus. Environmental Toxicology and Chemistry, 2003, 22, 1465-72.	2.2	8
135	Evaluation of tissue and cellular biomarkers to assess 2,4,6-trinitrotoluene (TNT) exposure in earthworms: effects-based assessment in laboratory studies usingEisenia andrei. Biomarkers, 2002, 7, 306-321.	0.9	29
136	Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling. FEBS Letters, 2002, 521, 115-120.	1.3	89
137	Metabonomic assessment of toxicity of 4â€fluoroaniline, 3,5â€difluoroaniline and 2â€fluoroâ€4â€methylaniline to the earthworm <i>Eisenia veneta</i> (rosa): Identification of new endogenous biomarkers. Environmental Toxicology and Chemistry, 2002, 21, 1966-1972.	2.2	110
138	METABONOMIC ASSESSMENT OF TOXICITY OF 4-FLUOROANILINE, 3,5-DIFLUOROANILINE AND 2-FLUORO-4-METHYLANILINE TO THE EARTHWORM EISENIA VENETA (ROSA): IDENTIFICATION OF NEW ENDOGENOUS BIOMARKERS. Environmental Toxicology and Chemistry, 2002, 21, 1966.	2.2	21
139	Metabonomic assessment of toxicity of 4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): identification of new endogenous biomarkers. Environmental Toxicology and Chemistry, 2002, 21, 1966-72.	2.2	16
140	Chronic toxicity of energetic compounds in soil determined using the earthworm (<i>Eisenia) Tj ETQq0 0 0 rgBT /</i>	Overlock I	10 Tf 50 222 109
141	Relative sensitivity of lifeâ€cycle and biomarker responses in four earthworm species exposed to zinc. Environmental Toxicology and Chemistry, 2000, 19, 1800-1808.	2.2	125
142	CHRONIC TOXICITY OF ENERGETIC COMPOUNDS IN SOIL DETERMINED USING THE EARTHWORM (EISENIA) Tj ET	⁻ Q <u>qQ</u> 0 0 r	gBT /Overloc
143	RELATIVE SENSITIVITY OF LIFE-CYCLE AND BIOMARKER RESPONSES IN FOUR EARTHWORM SPECIES EXPOSED TO ZINC. Environmental Toxicology and Chemistry, 2000, 19, 1800.	2.2	4
144	Radical Cation of N,N-Dimethylpiperazine: Â Dramatic Structural Effects of Orbital Interactions through	6.6	31

144 Bonds. Journal of the American Chemical Society, 1998, 120, 3748-3757. 6.6 $\mathbf{31}$

#	Article	IF	CITATIONS
145	1H NMR spectroscopic investigations of tissue metabolite biomarker response to Cu II exposure in terrestrial invertebrates: identification of free histidine as a novel biomarker of exposure to copper in earthworms. Biomarkers, 1997, 2, 295-302.	0.9	70
146	Relevance and Applicability of a Simple Earthworm Biomarker of Copper Exposure. I. Links to Ecological Effects in a Laboratory Study withEisenia andrei. Ecotoxicology and Environmental Safety, 1997, 36, 72-79.	2.9	85
147	Relevance and Applicability of a Simple Earthworm Biomarker of Copper Exposure. II. Validation and Applicability under Field Conditions in a Mesocosm Experiment withLumbricus rubellus. Ecotoxicology and Environmental Safety, 1997, 36, 80-88.	2.9	41
148	A Simple Low-Cost Field Mesocosm for Ecotoxicological Studies on Earthworms. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1997, 117, 31-40.	0.5	7
149	Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Applied Soil Ecology, 1996, 3, 99-107.	2.1	69
150	Neutral red retention by lysosomes from earthworm (<i>Lumbricus rubellus</i>) coelomocytes: A simple biomarker of exposure to soil copper. Environmental Toxicology and Chemistry, 1996, 15, 1801-1805.	2.2	132
151	NEUTRAL RED RETENTION BY LYSOSOMES FROM EARTHWORM (LUMBRICUS RUBELLUS) COELOMOCYTES: A SIMPLE BIOMARKER OF EXPOSURE TO SOIL COPPER. Environmental Toxicology and Chemistry, 1996, 15, 1801.	2.2	78
152	The use of a lysosome assay for the rapid assessment of cellular stress from copper to the freshwater snail Viviparus contectus (Millet). Marine Pollution Bulletin, 1995, 31, 139-142.	2.3	47
153	Biological Methods for Assessing Potentially Contaminated Soils. , 0, , 163-205.		5