Claus Svendsen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1092037/claus-svendsen-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

148
papers8,737
citations47
h-index89
g-index157
ext. papers10,125
ext. citations6.5
avg, IF6.13
L-index

#	Paper	IF	Citations
148	Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms <i>NanoImpact</i> , 2022 , 25, 100375	5.6	2
147	Assessing the efficacy of antibiotic treatment to produce earthworms with a suppressed microbiome. <i>European Journal of Soil Biology</i> , 2022 , 108, 103366	2.9	0
146	How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity <i>NanoImpact</i> , 2022 , 25, 100366	5.6	7
145	Assessing the similarity of nanoforms based on the biodegradation of organic surface treatment chemicals <i>NanoImpact</i> , 2022 , 26, 100395	5.6	0
144	Earthworms ingest microplastic fibres and nanoplastics with effects on egestion rate and long-term retention. <i>Science of the Total Environment</i> , 2021 , 151022	10.2	7
143	A Kinetic Approach for Assessing the Uptake of Ag from Pristine and Sulfidized Ag Nanomaterials to Plants. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 1861-1872	3.8	Ο
142	Semi-automated analysis of microplastics in complex wastewater samples. <i>Environmental Pollution</i> , 2021 , 268, 115841	9.3	21
141	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. <i>Small</i> , 2020 , 16, e2000598	11	18
140	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for nanosafety assessment. <i>Computational and Structural Biotechnology Journal</i> , 2020 , 18, 583-602	6.8	41
139	A standardised bioassay method using a bench-top spray tower to evaluate entomopathogenic fungi for control of the greenhouse whitefly, Trialeurodes vaporariorum. <i>Pest Management Science</i> , 2020 , 76, 2513-2524	4.6	5
138	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. <i>Environmental Science: Nano</i> , 2020 , 7, 13-36	7.1	23
137	Predicting acute contact toxicity of organic binary mixtures in honey bees (A. mellifera) through innovative QSAR models. <i>Science of the Total Environment</i> , 2020 , 704, 135302	10.2	21
136	Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. <i>Environmental Science: Nano</i> , 2020 , 7, 3216-3232	7.1	9
135	The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms. <i>Nanomaterials</i> , 2020 , 10,	5.4	10
134	A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. <i>Nano Today</i> , 2020 , 35, 100941	17.9	37
133	The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. <i>Environmental Pollution</i> , 2020 , 267, 115633	9.3	7
132	Identification and Quantification of Microplastics in Potable Water and Their Sources within Water Treatment Works in England and Wales. <i>Environmental Science & Environmental Science & Environmenta</i>	34 ^{10.3}	34

(2017-2020)

131	Key principles and operational practices for improved nanotechnology environmental exposure assessment. <i>Nature Nanotechnology</i> , 2020 , 15, 731-742	28.7	34
130	Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. <i>Environmental Pollution</i> , 2019 , 254, 113078	9.3	21
129	Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. <i>Environmental Pollution</i> , 2019 , 255, 113174	9.3	72
128	Toxicogenomic responses of Caenorhabditis elegans to pristine and transformed zinc oxide nanoparticles. <i>Environmental Pollution</i> , 2019 , 247, 917-926	9.3	22
127	Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. <i>Environmental Science: Nano</i> , 2019 , 6, 1985-2001	7.1	30
126	Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. <i>EFSA Journal</i> , 2019 , 17, e05634	2.3	100
125	Using problem formulation for fit-for-purpose pre-market environmental risk assessments of regulated stressors. <i>EFSA Journal</i> , 2019 , 17, e170708	2.3	11
124	Investigating combined toxicity of binary mixtures in bees: Meta-analysis of laboratory tests, modelling, mechanistic basis and implications for risk assessment. <i>Environment International</i> , 2019 , 133, 105256	12.9	33
123	Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. <i>Current Opinion in Environmental Sustainability</i> , 2019 , 36, 105-115	7.2	37
122	Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to Caenorhabditis elegans. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 2609-2618	3.8	12
121	Phenotypic responses in Caenorhabditis elegans following chronic low-level exposures to inorganic and organic compounds. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 920-930	3.8	1
120	Quality evaluation of human and environmental toxicity studies performed with nanomaterials [] the GUIDEnano approach. <i>Environmental Science: Nano</i> , 2018 , 5, 381-397	7.1	29
119	Nanomaterials as Soil Pollutants 2018 , 161-190		11
118	Aging reduces the toxicity of pristine but not sulphidised silver nanoparticles to soil bacteria. <i>Environmental Science: Nano</i> , 2018 , 5, 2618-2630	7.1	20
117	Acute toxicity of organic pesticides to Daphnia magna is unchanged by co-exposure to polystyrene microplastics. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 166, 26-34	7	47
116	Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. <i>Science of the Total Environment</i> , 2017 , 586, 127-141	10.2	1226
115	Sewage sludge treated with metal nanomaterials inhibits earthworm reproduction more strongly than sludge treated with metal metals in bulk/salt forms. <i>Environmental Science: Nano</i> , 2017 , 4, 78-88	7.1	29
114	Novel Multi-isotope Tracer Approach To Test ZnO Nanoparticle and Soluble Zn Bioavailability in Joint Soil Exposures. <i>Environmental Science & Environmental Science & Environm</i>	10.3	19

113	Complementary Imaging of Silver Nanoparticle Interactions with Green Algae: Dark-Field Microscopy, Electron Microscopy, and Nanoscale Secondary Ion Mass Spectrometry. <i>ACS Nano</i> , 2017 , 11, 10894-10902	16.7	37
112	Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species?. <i>Science of the Total Environment</i> , 2017 , 578, 357-365	10.2	71
111	Large microplastic particles in sediments of tributaries of the River Thames, UK - Abundance, sources and methods for effective quantification. <i>Marine Pollution Bulletin</i> , 2017 , 114, 218-226	6.7	420
110	Comparing bee species responses to chemical mixtures: Common response patterns?. <i>PLoS ONE</i> , 2017 , 12, e0176289	3.7	38
109	Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions. <i>Environmental Science and Pollution Research</i> , 2016 ,	5.1	11
108	23, 4218-34 Great deeds or great risks? ScientistsIsocial representations of nanotechnology. <i>Journal of Risk</i> Research, 2016 , 19, 760-779	4.2	16
107	Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 4120-8	5.1	63
106	Multigenerational exposure to silver ions and silver nanoparticles reveals heightened sensitivity and epigenetic memory in Caenorhabditis elegans. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2016 , 283,	4.4	45
105	Joint Toxicity of Cadmium and Ionizing Radiation on Zooplankton Carbon Incorporation, Growth and Mobility. <i>Environmental Science & Environmental Scie</i>	10.3	11
104	Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNOIvia soil and food. <i>Ecotoxicology</i> , 2016 , 25, 267-78	2.9	27
103	Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. <i>Environmental Science: Nano</i> , 2016 , 3, 396-408	7.1	42
102	Earthworm Uptake Routes and Rates of Ionic Zn and ZnO Nanoparticles at Realistic Concentrations, Traced Using Stable Isotope Labeling. <i>Environmental Science & Environmental </i>	10.3	46
101	Variable Temperature Stress in the Nematode Caenorhabditis elegans (Maupas) and Its Implications for Sensitivity to an Additional Chemical Stressor. <i>PLoS ONE</i> , 2016 , 11, e0140277	3.7	16
100	Comparison and evaluation of pesticide monitoring programs using a process-based mixture model. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 3113-3123	3.8	7
99	Chronic oral lethal and sub-lethal toxicities of different binary mixtures of pesticides and contaminants in bees (Apis mellifera, Osmia bicornis and Bombus terrestris). <i>EFSA Supporting Publications</i> , 2016 , 13, 1076E	1.1	6
98	Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling. <i>Scientific Reports</i> , 2016 , 6, 37655	4.9	15
97	Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida. <i>Environmental Pollution</i> , 2015 , 205, 385-93	9.3	52
96	Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2263-70	3.8	43

(2013-2015)

95	Nested interactions in the combined toxicity of uranium and cadmium to the nematode Caenorhabditis elegans. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 118, 139-148	7	15	
94	Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNODand silver nanoparticles to earthworm Eisenia fetida in long-term aged soils. <i>Environmental Pollution</i> , 2015 , 203, 191-198	9.3	77	
93	CeO2 nanoparticles induce no changes in phenanthrene toxicity to the soil organisms Porcellionides pruinosus and Folsomia candida. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 113, 201-	-67	16	
92	Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 120, 117-23	7	31	
91	Combined Effects from IRadiation and Fluoranthene Exposure on Carbon Transfer from Phytoplankton to Zooplankton. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	9	
90	Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. <i>Ecotoxicology</i> , 2015 , 24, 239-61	2.9	42	
89	Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects. <i>Environmental Chemistry</i> , 2014 , 11, 268	3.2	42	
88	Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials. <i>Environmental Science: Nano</i> , 2014 , 1, 533-548	7.1	92	
87	Identifying biochemical phenotypic differences between cryptic species. <i>Biology Letters</i> , 2014 , 10,	3.6	12	
86	Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 108, 9-15	7	48	
85	Metabolomic analysis of soil communities can be used for pollution assessment. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 61-4	3.8	64	
84	The importance of experimental time when assessing the effect of temperature on toxicity in poikilotherms. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1363-71	3.8	6	
83	Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. <i>Nanotoxicology</i> , 2014 , 8, 559-72	5.3	94	
82	Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. <i>Environmental Pollution</i> , 2013 , 178, 244-53	9.3	22	
81	Metabolomics and its use in ecology. <i>Austral Ecology</i> , 2013 , 38, 713-720	1.5	53	
80	Comparisons of metabolic and physiological changes in rats following short term oral dosing with pesticides commonly found in food. <i>Food and Chemical Toxicology</i> , 2013 , 59, 438-45	4.7	17	
79	ZnO nanoparticle interactions with phospholipid monolayers. <i>Journal of Colloid and Interface Science</i> , 2013 , 404, 161-8	9.3	11	
78	A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1711-7	, 3.8	31	

77	Low temperatures enhance the toxicity of copper and cadmium to Enchytraeus crypticus through different mechanisms. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 2274-83	3.8	20
76	Earthworms produce phytochelatins in response to arsenic. <i>PLoS ONE</i> , 2013 , 8, e81271	3.7	23
75	Towards a renewed research agenda in ecotoxicology. Environmental Pollution, 2012, 160, 201-6	9.3	65
74	Can the joint effect of ternary mixtures be predicted from binary mixture toxicity results?. <i>Science of the Total Environment</i> , 2012 , 427-428, 229-37	10.2	40
73	Potential new method of mixture effects testing using metabolomics and Caenorhabditis elegans. Journal of Proteome Research, 2012 , 11, 1446-53	5.6	39
72	Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population. <i>BMC Medicine</i> , 2012 , 10, 61	11.4	98
71	How does growth temperature affect cadmium toxicity measured on different life history traits in the soil nematode Caenorhabditis elegans?. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 787-93	3.8	17
70	Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1679-92	3.8	301
69	A metabolomics based test of independent action and concentration addition using the earthworm Lumbricus rubellus. <i>Ecotoxicology</i> , 2012 , 21, 1436-47	2.9	42
68	Modelling the joint effects of a metal and a pesticide on reproduction and toxicokinetics in Lumbricid earthworms. <i>Environment International</i> , 2011 , 37, 663-70	12.9	42
67	Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. <i>Environment International</i> , 2011 , 37, 1111-7	12.9	80
66	Toxicokinetic studies reveal variability in earthworm pollutant handling. <i>Pedobiologia</i> , 2011 , 54, S217-S	2 3 27	25
65	An assessment of the fate, behaviour and environmental risk associated with sunscreen TiOI nanoparticles in UK field scenarios. <i>Science of the Total Environment</i> , 2011 , 409, 2503-10	10.2	126
64	Outdoor and indoor cadmium distributions near an abandoned smelting works and their relations to human exposure. <i>Environmental Pollution</i> , 2011 , 159, 3425-32	9.3	11
63	Interactions between effects of environmental chemicals and natural stressors: a review. <i>Science of the Total Environment</i> , 2010 , 408, 3746-62	10.2	519
62	Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations. <i>Science of the Total Environment</i> , 2010 , 408, 3794-802	10.2	28
61	Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. <i>Science of the Total Environment</i> , 2010 , 408, 3725-34	10.2	170
60	Linking toxicant physiological mode of action with induced gene expression changes in Caenorhabditis elegans. <i>BMC Systems Biology</i> , 2010 , 4, 32	3.5	42

(2005-2010)

59	Critical Limits for Hg(II) in soils, derived from chronic toxicity data. <i>Environmental Pollution</i> , 2010 , 158, 2465-71	9.3	65
58	Similarity, independence, or interaction for binary mixture effects of nerve toxicants for the nematode Caenorhabditis elegans. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1182-91	3.8	38
57	Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1716-26	3.8	88
56	Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus. <i>Metabolomics</i> , 2009 , 5, 72-83	4.7	46
55	Measurement and modeling of the toxicity of binary mixtures in the nematode caenorhabditis elegansa test of independent action. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 97-104	3.8	47
54	Combined chemical (fluoranthene) and drought effects on Lumbricus rubellus demonstrate the applicability of the independent action model for multiple stressor assessment. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 629-36	3.8	27
53	Measuring and modelling mixture toxicity of imidacloprid and thiacloprid on Caenorhabditis elegans and Eisenia fetida. <i>Ecotoxicology and Environmental Safety</i> , 2009 , 72, 71-79	7	84
52	Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricus rubellus. <i>Environmental Pollution</i> , 2009 , 157, 2459-69	9.3	51
51	Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. <i>BMC Genomics</i> , 2008 , 9, 266	4.5	90
50	A metabolomics based approach to assessing the toxicity of the polyaromatic hydrocarbon pyrene to the earthworm Lumbricus rubellus. <i>Chemosphere</i> , 2008 , 71, 601-9	8.4	109
49	Comparative transcriptomic responses to chronic cadmium, fluoranthene, and atrazine exposure in Lumbricus rubellus. <i>Environmental Science & Environmental Environmental</i>	10.3	35
48	'Systems toxicology' approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. <i>BMC Biology</i> , 2008 , 6, 25	7.3	152
47	Effect of temperature and season on reproduction, neutral red retention and metallothionein responses of earthworms exposed to metals in field soils. <i>Environmental Pollution</i> , 2007 , 147, 83-93	9.3	22
46	Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. <i>Environmental Science & Environmental Science & E</i>	10.3	93
45	Developing a critical load approach for national risk assessments of atmospheric metal deposition. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 883-90	3.8	20
44	Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 788-96	3.8	66
43	Fractions affected and probabilistic risk assessment of Cu, Zn, Cd, and Pb in soils using the free ion approach. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	19
42	Establishing principal soil quality parameters influencing earthworms in urban soils using bioassays. <i>Environmental Pollution</i> , 2005 , 133, 199-211	9.3	18

41	Earthworm responses to Cd and Cu under fluctuating environmental conditions: a comparison with results from laboratory exposures. <i>Environmental Pollution</i> , 2005 , 136, 443-52	9.3	52
40	Hierarchical responses of soil invertebrates (earthworms) to toxic metal stress. <i>Environmental Science & Environmental Scienc</i>	10.3	42
39	Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. <i>Archives of Environmental Contamination and Toxicology</i> , 2005 , 48, 56-67	3.2	15
38	Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2701-13	3.8	350
37	Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. <i>Science of the Total Environment</i> , 2004 , 330, 9-20	10.2	65
36	Pedological characterisation of sites along a transect from a primary cadmium/lead/zinc smelting works. <i>Ecotoxicology</i> , 2004 , 13, 725-37	2.9	46
35	Environmental metabonomics: applying combination biomarker analysis in earthworms at a metal contaminated site. <i>Ecotoxicology</i> , 2004 , 13, 797-806	2.9	117
34	Metal effects on soil invertebrate feeding: measurements using the bait lamina method. <i>Ecotoxicology</i> , 2004 , 13, 807-16	2.9	49
33	Critical analysis of soil invertebrate biomarkers: a field case study in Avonmouth, UK. <i>Ecotoxicology</i> , 2004 , 13, 817-22	2.9	29
32	Deriving soil critical limits for Cu, Zn, Cd, and Pb: a method based on free ion concentrations. <i>Environmental Science & Environmental Science & Envi</i>	10.3	167
31	Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2004 , 138, 11-21	3.2	32
30	Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. <i>Chemosphere</i> , 2004 , 57, 1675-81	8.4	89
29	Responses of earthworms (Lumbricus rubellus) to copper and cadmium as determined by measurement of juvenile traits in a specifically designed test system. <i>Ecotoxicology and Environmental Safety</i> , 2004 , 57, 54-64	7	59
28	A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?. <i>Ecotoxicology and Environmental Safety</i> , 2004 , 57, 20-9	7	106
27	Comparison of instantaneous rate of population increase and critical-effect estimates in Folsomia candida exposed to four toxicants. <i>Ecotoxicology and Environmental Safety</i> , 2004 , 57, 175-83	7	39
26	Closing the loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 970-976	3.8	18
25	Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete Lumbricus rubellus. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 1465-1472	3.8	40
24	Explaining density-dependent regulation in earthworm populations using life-history analysis. <i>Oikos</i> , 2003 , 100, 89-95	4	29

23	Closing the loop: A spatial analysis to link observed environmental damage to predicted heavy metal emissions 2003 , 22, 970		2
22	. Environmental Toxicology and Chemistry, 2003 , 22, 1465	3.8	4
21	Quantifying copper and cadmium impacts on intrinsic rate of population increase in the terrestrial oligochaete Lumbricus rubellus. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 1465-72	3.8	8
20	Metabonomic assessment of toxicity of 4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (rosa): Identification of new endogenous biomarkers. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1966-1972	3.8	104
19	Evaluation of tissue and cellular biomarkers to assess 2,4,6-trinitrotoluene (TNT) exposure in earthworms: effects-based assessment in laboratory studies using Eisenia andrei. <i>Biomarkers</i> , 2002 , 7, 306-21	2.6	28
18	Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling. <i>FEBS Letters</i> , 2002 , 521, 115-20	3.8	76
17	. Environmental Toxicology and Chemistry, 2002 , 21, 1966	3.8	21
16	Metabonomic assessment of toxicity of 4-fluoroaniline, 3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): identification of new endogenous biomarkers. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 1966-72	3.8	15
15	Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1764-1773	3.8	103
14	Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1800-1808	3.8	114
13	. Environmental Toxicology and Chemistry, 2000 , 19, 1764	3.8	10
12	Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc 2000 , 19, 1800		3
11	Radical Cation of N,N-Dimethylpiperazine: Dramatic Structural Effects of Orbital Interactions through Bonds. <i>Journal of the American Chemical Society</i> , 1998 , 120, 3748-3757	16.4	29
10	1H NMR spectroscopic investigations of tissue metabolite biomarker response to Cu II exposure in terrestrial invertebrates: identification of free histidine as a novel biomarker of exposure to copper in earthworms. <i>Biomarkers</i> , 1997 , 2, 295-302	2.6	59
9	Relevance and applicability of a simple earthworm biomarker of copper exposure. I. Links to ecological effects in a laboratory study with Eisenia andrei. <i>Ecotoxicology and Environmental Safety</i> , 1997 , 36, 72-9	7	76
8	Relevance and applicability of a simple earthworm biomarker of copper exposure. II. Validation and applicability under field conditions in a mesocosm experiment with Lumbricus rubellus. <i>Ecotoxicology and Environmental Safety</i> , 1997 , 36, 80-8	7	36
7	A Simple Low-Cost Field Mesocosm for Ecotoxicological Studies on Earthworms. <i>Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology</i> , 1997 , 117, 31-40		2
6	Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. <i>Applied Soil Ecology</i> , 1996 , 3, 99-107	5	64

5	Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) coelomocytes: A simple biomarker of exposure to soil copper. <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 1801-1805	3.8	120
4	. Environmental Toxicology and Chemistry, 1996 , 15, 1801	3.8	73
3	The use of a lysosome assay for the rapid assessment of cellular stress from copper to the freshwater snail Viviparus contectus (Millet). <i>Marine Pollution Bulletin</i> , 1995 , 31, 139-142	6.7	40
2	Biological Methods for Assessing Potentially Contaminated Soils163-205		2
1	The bioaccumulation testing strategy for manufactured nanomaterials: physico-chemical triggers and read across from earthworms in a meta-analysis. <i>Environmental Science: Nano</i> ,	7.1	1