

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10919686/publications.pdf Version: 2024-02-01



| <ul> <li>Mesopelagic fish gas bladder elongation, as estimated from wideband acoustic backscattering measurements. Journal of the Acoustical Society of America, 2022, 151, 4073-4085.</li> <li>Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency spl beam echosounder in Svalbard waters. Progress in Oceanography, 2022, 206, 102842.</li> <li>Nonlinear crosstalk in broadband multi-channel echosounders. Journal of the Acoustical Society America, 2021, 149, 87-101.</li> <li>Corrigendum to: Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES Journal of Marine Science, 2021, 78, 1174-1174.</li> <li>A deep scattering layer under the North Pole pack ice. Progress in Oceanography, 2021, 194, 10</li> <li>Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES Journal of Marine Science, 2021, 78, 940-951.</li> <li>Ci&gt;In situ (<i>i</i>) calibration of observatory broadband echosounders. ICES Journal of Marine Science, 2020, 77, 2954-2959.</li> <li>Field measurements of acoustic absorption in seawater from 38 to 360 kHz, Journal of the Acoustical Science, 2020, 77, 2954-2959.</li> </ul> | 1.1        | 1  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
| <ul> <li>Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency spl beam echosounder in Svalbard waters. Progress in Oceanography, 2022, 206, 102842.</li> <li>Nonlinear crosstalk in broadband multi-channel echosounders. Journal of the Acoustical Society America, 2021, 149, 87-101.</li> <li>Corrigendum to: Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES Journal of Marine Science, 2021, 78, 1174-1174.</li> <li>A deep scattering layer under the North Pole pack ice. Progress in Oceanography, 2021, 194, 10</li> <li>Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES Journal of Marine Science, 2021, 78, 940-951.</li> <li>Ki&gt;In situ</li> <li>calibration of observatory broadband echosounders. ICES Journal of Marine Science, 2020, 77, 2954-2959.</li> </ul>                                                                                                                                                                                                                                                                                                                                     |            |    |
| <ul> <li>Nonlinear crosstalk in broadband multi-channel echosounders. Journal of the Acoustical Society<br/>America, 2021, 149, 87-101.</li> <li>Corrigendum to: Estimating individual fish school biomass using digital omnidirectional sonars,<br/>applied to mackerel and herring. ICES Journal of Marine Science, 2021, 78, 1174-1174.</li> <li>A deep scattering layer under the North Pole pack ice. Progress in Oceanography, 2021, 194, 10</li> <li>Estimating individual fish school biomass using digital omnidirectional sonars, applied to macker<br/>and herring. ICES Journal of Marine Science, 2021, 78, 940-951.</li> <li>(i) In situ </li> <li>calibration of observatory broadband echosounders. ICES Journal of Marine Science </li> <li>Field measurements of acoustic absorption in seawater from 38 to 360 kHz, Journal of the Acoustical Society Science</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | t 3.2      | 1  |
| <ul> <li>Corrigendum to: Estimating individual fish school biomass using digital omnidirectional sonars, applied to mackerel and herring. ICES Journal of Marine Science, 2021, 78, 1174-1174.</li> <li>A deep scattering layer under the North Pole pack ice. Progress in Oceanography, 2021, 194, 10</li> <li>Estimating individual fish school biomass using digital omnidirectional sonars, applied to macker and herring. ICES Journal of Marine Science, 2021, 78, 940-951.</li> <li><a href="mailto:vi&gt;ln situ&lt;/i&gt;2020, 77, 2954-2959">vi&gt;ln situ</a></li> <li>Field measurements of acoustic absorption in seawater from 38 to 360 kHz Journal of the Acoustic absorption in seawater from 38 to 360 kHz.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of 1.1     | 9  |
| <ul> <li>A deep scattering layer under the North Pole pack ice. Progress in Oceanography, 2021, 194, 10</li> <li>Estimating individual fish school biomass using digital omnidirectional sonars, applied to macker and herring. ICES Journal of Marine Science, 2021, 78, 940-951.</li> <li>(i) In situ         /i&gt; calibration of observatory broadband echosounders. ICES Journal of Marine Science, 2020, 77, 2954-2959.     </li> <li>Field measurements of acoustic absorption in seawater from 38 to 360 kHz. Journal of the Acoustic absorption in seawater from 38 to 360 kHz.     </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5        | 0  |
| <ul> <li>Estimating individual fish school biomass using digital omnidirectional sonars, applied to macker and herring. ICES Journal of Marine Science, 2021, 78, 940-951.</li> <li>(i&gt;In situ calibration of observatory broadband echosounders. ICES Journal of Marine Science 2020, 77, 2954-2959. </li> <li>Field measurements of acoustic absorption in seawater from 38 to 360 kHz, Journal of the Acoustic absorption in seawater from 38 to 360 kHz.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2560. 3.2  | 15 |
| <ul> <li><i>In situ</i> calibration of observatory broadband echosounders. ICES Journal of Marine Science 2020, 77, 2954-2959.</li> <li>Field measurements of acoustic absorption in seawater from 38 to 360 kHz. Journal of the Acoustic absorption in seawater from 38 to 360 kHz.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rel 2.5    | 2  |
| Field measurements of acoustic absorption in seawater from 38 to 360 kHz. Journal of the Acou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e, 2.5     | 1  |
| <sup>8</sup> Society of America, 2020, 148, 100-107.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | stical 1.1 | 7  |
| 9 Remote sizing of fish-like targets using broadband acoustics. Fisheries Research, 2020, 228, 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 568. 1.7   | 12 |
| 10 Study of the Arctic mesopelagic layer with vessel and profiling multifrequency acoustics. Progres<br>Oceanography, 2020, 182, 102260.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ss in 3.2  | 8  |
| 11 Estimating the volumes of fish schools from observations with multi-beam sonars. ICES Journal of Marine Science, 2017, 74, 813-821.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f 2.5      | 10 |
| Evaluation of target angular position algorithms for multi-beam fishery sonars. Journal of the<br>Acoustical Society of America, 2017, 141, 1074-1083.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1        | 1  |
| Practical calibration of ship-mounted omni-directional fisheries sonars. Methods in Oceanograph 2016, 17, 206-220.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | у, 1.6     | 4  |
| 14 Two mechanical rigs for field calibration of multi-beam fishery sonars. Methods in Oceanography<br>2015, 13-14, 1-12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 1.6      | 5  |
| <sup>15</sup> Target strengths of two abundant mesopelagic fish species. Journal of the Acoustical Society of America, 2015, 137, 989-1000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1        | 45 |
| Measuring in situ krill tilt orientation by stereo photogrammetry: examples for Euphausia superb<br>Meganyctiphanes norvegica. ICES Journal of Marine Science, 2015, 72, 2494-2505.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a and 2.5  | 22 |
| Broad bandwidth acoustic backscattering from sandeel—measurements and finite element simulations. ICES Journal of Marine Science, 2014, 71, 1894-1903.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5        | 12 |
| Marine ecosystem acoustics (MEA): quantifying processes in the sea at the spatio-temporal scal<br>which they occur. ICES Journal of Marine Science, 2014, 71, 2357-2369.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25.00      |    |

Egil Ona

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Measurements of acoustic attenuation at 38kHz by wind-induced air bubbles with suggested correction factors for hull-mounted transducers. Fisheries Research, 2014, 151, 47-56.                                                      | 1.7 | 16        |
| 20 | Feeding herring schools do not react to seismic air gun surveys. ICES Journal of Marine Science, 2013,<br>70, 1174-1180.                                                                                                             | 2.5 | 30        |
| 21 | Measuring fish and zooplankton with a broadband split beam echo sounder. , 2013, , .                                                                                                                                                 |     | 1         |
| 22 | Target strength and tilt-angle distribution of the lesser sandeel (Ammodytes marinus). ICES Journal of<br>Marine Science, 2012, 69, 1099-1107.                                                                                       | 2.5 | 24        |
| 23 | Sounds from seismic air guns: gear- and species-specific effects on catch rates and fish distribution.<br>Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1278-1291.                                                   | 1.4 | 54        |
| 24 | Effects of Sounds From Seismic Air Guns on Fish Behavior and Catch Rates. Advances in Experimental<br>Medicine and Biology, 2012, 730, 415-419.                                                                                      | 1.6 | 9         |
| 25 | A revised target strength–length estimate for blue whiting (Micromesistius poutassou): implications<br>for biomass estimates. ICES Journal of Marine Science, 2011, 68, 2222-2228.                                                   | 2.5 | 8         |
| 26 | Quantifying and reducing the surface blind zone and the seabed dead zone using new technology. ICES<br>Journal of Marine Science, 2009, 66, 1370-1376.                                                                               | 2.5 | 16        |
| 27 | The use of an adaptive acoustic-survey design to estimate the abundance of highly skewed fish populations. ICES Journal of Marine Science, 2009, 66, 1349-1354.                                                                      | 2.5 | 6         |
| 28 | Size-dependent frequency response of sandeel schools. ICES Journal of Marine Science, 2009, 66, 1100-1105.                                                                                                                           | 2.5 | 39        |
| 29 | Measuring herring densities with one real and several phantom research vessels. ICES Journal of<br>Marine Science, 2009, 66, 1264-1269.                                                                                              | 2.5 | 8         |
| 30 | Lateral-aspect, target-strength measurements of in situ herring (Clupea harengus). ICES Journal of<br>Marine Science, 2009, 66, 1191-1196.                                                                                           | 2.5 | 17        |
| 31 | An introduction to the proceedings and a synthesis of the 2008 ICES Symposium on the Ecosystem<br>Approach with Fisheries Acoustics and Complementary Technologies (SEAFACTS). ICES Journal of<br>Marine Science, 2009, 66, 961-965. | 2.5 | 9         |
| 32 | Calibration methods for two scientific multibeam systems. ICES Journal of Marine Science, 2009, 66, 1326-1334.                                                                                                                       | 2.5 | 31        |
| 33 | Differences in swimbladder volume between Baltic and Norwegian spring-spawning herring:<br>Consequences for mean target strength. Fisheries Research, 2008, 92, 314-321.                                                             | 1.7 | 16        |
| 34 | Proposals for the collection of multifrequency acoustic data. ICES Journal of Marine Science, 2008, 65, 982-994.                                                                                                                     | 2.5 | 82        |
| 35 | Correcting for vessel avoidance in acoustic-abundance estimates for herring. ICES Journal of Marine<br>Science, 2008, 65, 1036-1045.                                                                                                 | 2.5 | 22        |
| 36 | Estimating and decomposing total uncertainty for survey-based abundance estimates of Norwegian spring-spawning herring. ICES Journal of Marine Science, 2007, 64, 1302-1312.                                                         | 2.5 | 32        |

Egil Ona

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Acoustic backscatter by schools of adult Atlantic mackerel. ICES Journal of Marine Science, 2007, 64, 1145-1151.                                                                               | 2.5 | 27        |
| 38 | Calibrating multibeam, wideband sonar with reference targets. , 2007, , .                                                                                                                      |     | 7         |
| 39 | Silent research vessels are not quiet. Journal of the Acoustical Society of America, 2007, 121, EL145-EL150.                                                                                   | 1.1 | 82        |
| 40 | Acoustic backscattering by Atlantic mackerel as being representative of fish that lack a swimbladder.<br>Backscattering by individual fish. ICES Journal of Marine Science, 2005, 62, 984-995. | 2.5 | 33        |
| 41 | Acoustic mapping of pelagic fish distribution and abundance in relation to a seismic shooting area off the Norwegian west coast. Fisheries Research, 2004, 67, 143-150.                        | 1.7 | 98        |
| 42 | Modelling the acoustic effect of swimbladder compression in herring. ICES Journal of Marine Science, 2003, 60, 548-554.                                                                        | 2.5 | 37        |
| 43 | Synthetic echograms generated from the relative frequency response. ICES Journal of Marine Science, 2003, 60, 636-640.                                                                         | 2.5 | 139       |
| 44 | Modelling the effect of swimbladder compression on the acoustic backscattering from herring at normal or near-normal dorsal incidences. ICES Journal of Marine Science, 2003, 60, 1381-1391.   | 2.5 | 27        |
| 45 | An expanded target-strength relationship for herring. ICES Journal of Marine Science, 2003, 60, 493-499.                                                                                       | 2.5 | 126       |
| 46 | Determining the extinction cross section of aggregating fish. Journal of the Acoustical Society of America, 1992, 91, 1983-1989.                                                               | 1.1 | 24        |