
Catherine Schuster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1091950/publications.pdf Version: 2024-02-01

CATHEDINE SCHUSTED

#	Article	IF	CITATIONS
1	Hepatocellular carcinoma chemoprevention by targeting the angiotensin-converting enzyme and EGFR transactivation. JCI Insight, 2022, 7, .	2.3	4
2	Hepatitis B virus compartmentalization and single-cell differentiation in hepatocellular carcinoma. Life Science Alliance, 2021, 4, e202101036.	1.3	4
3	A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nature Communications, 2021, 12, 5525.	5.8	21
4	Liver cell circuits and therapeutic discovery for advanced liver disease and cancer. Comptes Rendus - Biologies, 2021, 344, 233-248.	0.1	0
5	Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut, 2020, 69, 158-167.	6.1	31
6	A genome-wide gain-of-function screen identifies CDKN2C as a HBV host factor. Nature Communications, 2020, 11, 2707.	5.8	11
7	Targeting the Host for New Therapeutic Perspectives in Hepatitis D. Journal of Clinical Medicine, 2020, 9, 222.	1.0	12
8	Tight Junction Proteins and the Biology of Hepatobiliary Disease. International Journal of Molecular Sciences, 2020, 21, 825.	1.8	36
9	Hepatitis B Virus Core Variants, Liver Fibrosis, and Hepatocellular Carcinoma. Hepatology, 2019, 69, 5-8.	3.6	23
10	Interferonâ€induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology, 2019, 70, 1506-1520.	3.6	21
11	Reply. Hepatology, 2019, 70, 766-766.	3.6	0
12	In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection. Antiviral Research, 2019, 162, 136-141.	1.9	4
13	Hepatitis B Virus Evasion From Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase Sensing in Human Hepatocytes. Hepatology, 2018, 68, 1695-1709.	3.6	66
14	Host-targeting therapies for hepatitis C virus infection: current developments and future applications. Therapeutic Advances in Gastroenterology, 2018, 11, 175628481875948.	1.4	32
15	Perceptions of Infusion Pump Alarms. Journal of Infusion Nursing, 2018, 41, 309-318.	1.2	12
16	Hepatitis C Virus (HCV)–Apolipoprotein Interactions and Immune Evasion and Their Impact on HCV Vaccine Design. Frontiers in Immunology, 2018, 9, 1436.	2.2	38
17	The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses. Cellular and Molecular Life Sciences, 2018, 75, 3895-3905.	2.4	15
18	Hepatitis C virus–apolipoprotein interactions: molecular mechanisms and clinical impact. Expert Review of Proteomics, 2017, 14, 593-606.	1.3	15

CATHERINE SCHUSTER

#	Article	IF	CITATIONS
19	Extracellular lipid-free apolipoprotein E inhibits HCV replication and induces ABCG1-dependent cholesterol efflux. Gut, 2017, 66, 896-907.	6.1	11
20	Advancing hepatitis B virus entry inhibitors. Journal of Hepatology, 2017, 66, 677-679.	1.8	6
21	A Simulation-Based Blended Curriculum for Short Peripheral Intravenous Catheter Insertion: An Industry–Practice Collaboration. Journal of Continuing Education in Nursing, 2017, 48, 397-406.	0.2	13
22	Cell Culture Models for the Investigation of Hepatitis B and D Virus Infection. Viruses, 2016, 8, 261.	1.5	44
23	Editorial overview: Viral resistance and challenges for antiviral therapies and vaccines. Current Opinion in Virology, 2016, 20, vi-vii.	2.6	1
24	Development and Testing of a Short Peripheral Intravenous Catheter Insertion Skills Checklist. , 2016, 21, 196-204.		9
25	Hepatitis C Virus-Induced Upregulation of MicroRNA miR-146a-5p in Hepatocytes Promotes Viral Infection and Deregulates Metabolic Pathways Associated with Liver Disease Pathogenesis. Journal of Virology, 2016, 90, 6387-6400.	1.5	97
26	Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Reports, 2016, 17, 1357-1368.	2.9	34
27	HCV Receptors and Virus Entry. , 2016, , 81-103.		3
28	Addressing the next challenges: A summary of the 22nd international symposium on hepatitis C virus and related viruses. Journal of Hepatology, 2016, 64, 968-973.	1.8	7
29	A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatology, 2016, 63, 35-48.	3.6	131
30	High-throughput approaches to unravel hepatitis C virus-host interactions. Virus Research, 2016, 218, 18-24.	1.1	9
31	Apolipoprotein E Mediates Evasion From Hepatitis C Virus Neutralizing Antibodies. Gastroenterology, 2016, 150, 206-217.e4.	0.6	64
32	PI4K-beta and MKNK1 are regulators of hepatitis C virus IRES-dependent translation. Scientific Reports, 2015, 5, 13344.	1.6	11
33	Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses, 2015, 7, 5659-5685.	1.5	54
34	Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E. PLoS ONE, 2014, 9, e95550.	1.1	64
35	CD81-Receptor Associations — Impact for Hepatitis C Virus Entry and Antiviral Therapies. Viruses, 2014, 6, 875-892.	1.5	33
36	RACK1 Controls IRES-Mediated Translation of Viruses. Cell, 2014, 159, 1086-1095.	13.5	149

CATHERINE SCHUSTER

#	Article	IF	CITATIONS
37	New tool for the study of hepatitis C virus genotype 3 and its associated liver disease biology. Hepatology, 2014, 60, 1806-1808.	3.6	0
38	TIP47 plays a crucial role in the life cycle of hepatitis C virus. Journal of Hepatology, 2013, 58, 1081-1088.	1.8	61
39	TIP47 is associated with the Hepatitis C virus and its interaction with Rab9 is required for release of viral particles. European Journal of Cell Biology, 2013, 92, 374-382.	1.6	46
40	Hepatitis C Virus, Cholesterol and Lipoproteins — Impact for the Viral Life Cycle and Pathogenesis of Liver Disease. Viruses, 2013, 5, 1292-1324.	1.5	126
41	Geldanamycin and its derivatives as Hsp90 inhibitors. Frontiers in Bioscience - Landmark, 2012, 17, 2269.	3.0	64
42	Triglyceride synthesis and hepatitis C virus production: Identification of a novel host factor as antiviral target. Hepatology, 2011, 53, 1046-1048.	3.6	2
43	Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology, 2010, 51, 43-53.	3.6	191
44	Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-Claudin-1 associations. Hepatology, 2010, 51, 1144-1157.	3.6	144
45	Monoclonal Anti-Claudin 1 Antibodies Prevent Hepatitis C Virus Infection of Primary Human Hepatocytes. Gastroenterology, 2010, 139, 953-964.e4.	0.6	151
46	Virus–host interactions in hepatitis C virus infection: implications for molecular pathogenesis and antiviral strategies. Trends in Molecular Medicine, 2010, 16, 277-286.	3.5	62
47	Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy. Frontiers in Bioscience - Landmark, 2009, Volume, 3274.	3.0	38
48	EWI-2wint – A host cell factor inhibiting hepatitis C virus entry. Journal of Hepatology, 2009, 50, 222-224.	1.8	6
49	Virus-host interactions during hepatitis C virus entry — implications for pathogenesis and novel treatment approaches. Virologica Sinica, 2008, 23, 124-131.	1.2	1
50	Neutralizing Host Responses in Hepatitis C Virus Infection Target Viral Entry at Postbinding Steps and Membrane Fusion. Gastroenterology, 2008, 135, 1719-1728.e1.	0.6	65
51	145 VIRAL ENTRY AND ESCAPE FROM ANTIBODY-MEDIATED NEUTRALIZATION ARE KEY DETERMINANTS FOR THE SELECTION OF HEPATITIS C VIRUS VARIANTS DURING LIVER TRANSPLANTATION. Journal of Hepatology, 2008, 48, S63.	1.8	1
52	607 NEUTRALIZING HOST RESPONSES IN HEPATITIS C VIRUS INFECTION TARGET VIRAL ENTRY AT POST-BINDING STEPS AND MEMBRANE FUSION. Journal of Hepatology, 2008, 48, S226.	1.8	0
53	Sustained delivery of siRNAs targeting viral infection by cell-degradable multilayered polyelectrolyte films. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16320-16325.	3.3	71
54	The major form of hepatitis C virus alternate reading frame protein is suppressed by core protein expression. Nucleic Acids Research, 2008, 36, 3054-3064.	6.5	23

CATHERINE SCHUSTER

#	Article	IF	CITATIONS
55	Adenoviral Gene Delivery from Multilayered Polyelectrolyte Architectures. Advanced Functional Materials, 2007, 17, 233-245.	7.8	80
56	Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatology, 2007, 46, 1722-1731.	3.6	222
57	Hepatitis C virus core, NS3, NS5A, NS5B proteins induce apoptosis in mature dendritic cells. Journal of Medical Virology, 2005, 75, 402-411.	2.5	61
58	HCV core, NS3, NS5A and NS5B proteins modulate cell proliferation independently from p53 expression in hepatocarcinoma cell lines. Archives of Virology, 2004, 149, 323-336.	0.9	32
59	Comparative immunogenicity analysis of modified vaccinia Ankara vectors expressing native or modified forms of hepatitis C virus E1 and E2 glycoproteins. Vaccine, 2004, 22, 3917-3928.	1.7	29
60	Analysis of the subcellular localization of hepatitis C virus E2 glycoprotein in live cells using EGFP fusion proteins. Journal of General Virology, 2003, 84, 561-566.	1.3	8
61	Protein-Protein Interactions between Hepatitis C Virus Nonstructural Proteins. Journal of Virology, 2003, 77, 5401-5414.	1.5	160
62	Hepatitis C virus IRES efficiency is unaffected by the genomic RNA 3′NTR even in the presence of viral structural or non-structural proteins. Journal of General Virology, 2003, 84, 1549-1557.	1.3	24
63	Secondary Structure of the 3′ Terminus of Hepatitis C Virus Minus-Strand RNA. Journal of Virology, 2002, 76, 8058-8068.	1.5	41
64	Two Distinct Domains in Staf To Selectively Activate Small Nuclear RNA-Type and mRNA Promoters. Molecular and Cellular Biology, 1998, 18, 2650-2658.	1.1	38
65	Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III. EMBO Journal, 1997, 16, 173-181.	3.5	98
66	RNAs mediating cotranslational insertion of selenocysteine in eukaryotic selenoproteins. Biochimie, 1996, 78, 590-596.	1.3	33
67	Promoter Strength and Structure Dictate Module Composition in RNA Polymerase III Transcriptional Activator Elements. Journal of Molecular Biology, 1993, 234, 311-318.	2.0	19
68	Antiproliferative action of the steroid RU486 in cultured human lymphoma cells. Cancer Letters, 1993, 71, 43-50.	3.2	1
69	Point mutations 5' to the tRNA selenocysteine TATA box alter RNA polymerase III transcription by affecting the binding of TBP. Nucleic Acids Research, 1993, 21, 5852-5858.	6.5	27
70	Activation of Epstein-Barr virus promoters by a growth-factor and a glucocorticoid. FEBS Letters, 1991, 284, 82-86.	1.3	22
71	Evidence for a Functional Glucocorticoid Responsive Element in the Epstein-Barr Virus Genome. Molecular Endocrinology, 1991, 5, 267-272.	3.7	20
72	Binding studies of the antiglucocorticoid RU38486 in Daudi and Raji lymphoma cells. The Journal of Steroid Biochemistry, 1989, 34, 461-465.	1.3	3

5

#	Article	IF	CITATIONS
73	Antagonistic action of RU38486 on the activity of transforming growth factor-β in fibroblasts and lymphoma cells. The Journal of Steroid Biochemistry, 1988, 30, 381-385.	1.3	19