Robert M Anthony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10919048/publications.pdf Version: 2024-02-01

		218677	454955
32	7,174	26	30
papers	citations	h-index	g-index
32	32	32	9086
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A proteomic view of the Plasmodium falciparum life cycle. Nature, 2002, 419, 520-526.	27.8	1,184
2	Protective immune mechanisms in helminth infection. Nature Reviews Immunology, 2007, 7, 975-987.	22.7	807
3	Recapitulation of IVIG Anti-Inflammatory Activity with a Recombinant IgG Fc. Science, 2008, 320, 373-376.	12.6	748
4	Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature, 2011, 475, 110-113.	27.8	565
5	Identification of a receptor required for the anti-inflammatory activity of IVIG. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19571-19578.	7.1	489
6	Memory TH2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nature Medicine, 2006, 12, 955-960.	30.7	469
7	In vivo imaging reveals a tumor-associated macrophage–mediated resistance pathway in anti–PD-1 therapy. Science Translational Medicine, 2017, 9, .	12.4	466
8	Alternatively activated macrophages in helminth infections. Current Opinion in Immunology, 2007, 19, 448-453.	5.5	302
9	A Novel Role for the IgG Fc Glycan: The Anti-inflammatory Activity of Sialylated IgG Fcs. Journal of Clinical Immunology, 2010, 30, 9-14.	3.8	273
10	Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proceedings of the United States of America, 2007, 104, 8433-8437.	7.1	227
11	Th2 Cytokine-Induced Alterations in Intestinal Smooth Muscle Function Depend on Alternatively Activated Macrophages. Gastroenterology, 2008, 135, 217-225.e1.	1.3	183
12	Engineered Sialylation of Pathogenic Antibodies InÂVivo Attenuates Autoimmune Disease. Cell, 2018, 172, 564-577.e13.	28.9	166
13	Novel roles for the IgG Fc glycan. Annals of the New York Academy of Sciences, 2012, 1253, 170-180.	3.8	160
14	Modulation of Inflammatory Arthritis in Mice by Gut Microbiota Through Mucosal Inflammation and Autoantibody Generation. Arthritis and Rheumatology, 2018, 70, 1220-1233.	5.6	126
15	Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight, 2016, 1, e89362.	5.0	125
16	A single glycan on IgE is indispensable for initiation of anaphylaxis. Journal of Experimental Medicine, 2015, 212, 457-467.	8.5	111
17	Antibody Glycosylation and Inflammation. Antibodies, 2013, 2, 392-414.	2.5	94
18	Sialylation of immunoglobulin E is a determinant of allergic pathogenicity. Nature, 2020, 582, 265-270.	27.8	93

ROBERT M ANTHONY

#	Article	IF	CITATIONS
19	Infection with parasitic nematodes confounds vaccination efficacy. Veterinary Parasitology, 2007, 148, 14-20.	1.8	86
20	The role of differential IgG glycosylation in the interaction of antibodies with FcÎ ³ Rs in vivo. Current Opinion in Organ Transplantation, 2011, 16, 7-14.	1.6	83
21	Peripheral CD4 T Cells Rapidly Accumulate at the Host:Parasite Interface during an Inflammatory Th2 Memory Response. Journal of Immunology, 2004, 172, 2424-2430.	0.8	77
22	IgE/FcÎμRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses. Cell Reports, 2015, 10, 1487-1495.	6.4	61
23	High-Throughput Generation of P. falciparum Functional Molecules by Recombinational Cloning. Genome Research, 2004, 14, 2076-2082.	5.5	58
24	Maintenance of macrophage transcriptional programs and intestinal homeostasis by epigenetic reader SP140. Science Immunology, 2017, 2, .	11.9	54
25	Requirements for the development of IL-4-producing T cells during intestinal nematode infections: what it takes to make a Th2 cell in vivo. Immunological Reviews, 2004, 201, 57-74.	6.0	47
26	IL-2 and Autocrine IL-4 Drive the In Vivo Development of Antigen-Specific Th2 T Cells Elicited by Nematode Parasites. Journal of Immunology, 2005, 174, 2242-2249.	0.8	42
27	Sialylation as an Important Regulator of Antibody Function. Frontiers in Immunology, 2022, 13, 818736.	4.8	31
28	Acute inflammation primes myeloid effector cells for anti-inflammatory STAT6 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13487-13491.	7.1	22
29	IgE Glycosylation in Health and Disease. Current Topics in Microbiology and Immunology, 2019, 423, 77-93.	1.1	21
30	The Crossroads of Glycoscience, Infection, and Immunology. Frontiers in Microbiology, 2021, 12, 731008.	3.5	3
31	FcÎ ³ Receptors as Therapeutic Targets. , 2014, , 283-296.		1
32	Modulating T Follicular Cells In Vivo Enhances Antigen-Specific Humoral Immunity. Journal of Immunology, 2021, 206, 2583-2595.	0.8	0